a) \(0.25\in Q\) b) \(-\dfrac{6}{7}\in Q\) c) \(-235\notin Q\)
Hãy cho biết tính đúng, sai của mỗi khẳng định sau:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đúng vì \(0,25{\rm{ }} = \frac{{25}}{{100}} = \frac{1}{4}\) là số hữu tỉ
b) Đúng vì \(\frac{{ - 6}}{7}\) là số hữu tỉ
c) Sai vì \( - 235 = \frac{{ - 235}}{1}\) là số hữu tỉ.
Chú ý: Một số nguyên cũng là một số hữu tỉ.
Vậy các khẳng định đúng là a và b.
a) \(\sqrt 3 \in \mathbb{Q}\) sai.
Sửa lại: \(\sqrt 3 \notin \mathbb{Q}\)
b) \(\sqrt 3 \in \mathbb{R}\) đúng.
c) \(\frac{2}{3} \notin \mathbb{R}\) sai.
Sửa lại: \(\frac{2}{3} \in \mathbb{R}\)
d) \( - 9 \in \mathbb{R}\) đúng.
a) M = {g; i; a; đ; n; h}
b) Các khẳng định đúng là: \(a \in M\), \(b \notin M\), \(i \in M\)
Khẳng định sai là: \(o \in M\)
a) M = {g; i; a; đ; n; h}
b) Các khẳng định đúng: a∈M, b∉M, i∈M
Khẳng định sai: o∈M
Ta có tập hợp B = {31; 33; 35;….}
+) Vì 31 là số tự nhiên lẻ và thỏa mãn lớn hơn 30 nên 31 thuộc A.
+) Vì 32 là một số chẵn nên 32 không thuộc B.
+) 2 002 là một số chẵn nên 2 002 không thuộc B.
+) 2 003 là số tự nhiên lẻ và thỏa mãn lớn hơn 30 nên 2003 thuộc B.
Vậy: Các khẳng định đúng là: a, c
Các khẳng định sai là: b, d.
Giả sử khẳng định Q là đúng A + 51 có tận cùng là 2
P là khẳng định sai (vì không thể là bình phương số tự nhiên)
Khi đó A – 38 có tận cùng là 3 R là khẳng định sai (vì không là bình phương số tự nhiên)
Vậy Q là khẳng định sai và P, R là hai khẳng định đúng.
Giả sử khẳng định Q là đúng A + 51 có tận cùng là 2
P là khẳng định sai (vì không thể là bình phương số tự nhiên)
Khi đó A – 38 có tận cùng là 3 R là khẳng định sai (vì không là bình phương số tự nhiên)
Vậy Q là khẳng định sai và P, R là hai khẳng định đúng.
a) Mệnh đề “\(\forall x \in \mathbb{N},{x^3} > x\)” sai vì \(0 \in \mathbb{N}\) nhưng \({0^3} = 0.\)
b) Mệnh đề “\(\exists x \in \mathbb{Z},x \notin \mathbb{N}\)” đúng, chẳng hạn \( - 2 \in \mathbb{Z}, - 2 \notin \mathbb{N}.\)
c) Mệnh đề “\(\forall x \in \mathbb{R},\) nếu \(x \in \mathbb{Z}\) thì \(x \in \mathbb{Q}\)” đúng vì \(\mathbb{Z} \subset \mathbb{Q}.\)
a: \(0,25\in Q\)
=>Đúng
b: \(-\dfrac{6}{7}\in Q\)
=>Đúng
c: \(-235\notin Q\)
=>Sai