K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6

Ta có: \(\dfrac{y+z+2}{x}=\dfrac{x+z+3}{y}=\dfrac{x+y-5}{z}=\dfrac{1}{x+y+z}\) (\(x,y,z\ne0\))

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{y+z+2}{x}=\dfrac{x+z+3}{y}=\dfrac{x+y-5}{z}=\dfrac{1}{x+y+z}\)

\(=\dfrac{y+z+2+x+z+3+x+y-5}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\left\{{}\begin{matrix}y+z+2=2x\\x+z+3=2y\\x+y-5=2z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+z+2=3x\\x+y+z+3=3y\\x+y+z-5=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3x=\dfrac{1}{2}+2=\dfrac{5}{2}\\3y=\dfrac{1}{2}+3=\dfrac{7}{2}\\3z=\dfrac{1}{2}-5=-\dfrac{9}{2}\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{6}\left(tm\right)\\y=\dfrac{7}{6}\left(tm\right)\\z=-\dfrac{3}{2}\left(tm\right)\end{matrix}\right.\)

#$\mathtt{Toru}$

24 tháng 6

ai giải dc mình tick cho

25 tháng 6 2015

a) \(aaaa:x=a\Rightarrow aaaa:a=x\Rightarrow x=1111\)

b) \(x\times a=a0a0a0\Rightarrow x=a0a0a0:a\Rightarrow x=101010\)

25 tháng 2 2020

giup minh voikhocroi

7 tháng 9 2016

Để M có giá trị nguyên thì x - 2 chia hết cho x + 3

=> (x + 3) - 5 chia hét cho x + 3

=> 5 chia hết cho x + 3

=> x + 3 thuộc Ư(5) = {-1;1;-5;5}

Ta có:

x + 3-5-115
x-8-4-22