tìm tất cả các cặp x,y thỏa mãn: \(5-x^2-2x=y^2+2y+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Viết pt trên thành pt bậc 2 đối với x:
\(2x^2-x\left(y+1\right)-\left(2y-1\right)=0\) (1)
(1) có nghiệm \(\Leftrightarrow\Delta=\left(y+1\right)^2+8\left(2y-1\right)\ge0\)
\(\Leftrightarrow y^2+18y-7\ge0\Leftrightarrow\orbr{\begin{cases}y\le-9-2\sqrt{22}\\y\ge-9+2\sqrt{22}\end{cases}}\)
Ta cần có \(\Delta\) là số chính phương.Tức là:
\(y^2+18y-7=k^2\Leftrightarrow\left(x+9\right)^2-k^2=88\)
\(\Leftrightarrow\left(x+9-k\right)\left(x+9+k\right)=88\)
Gắt gắt,đợi tí nghĩ cách khác xem sao,cách này thử sao nổi -_-

chắc bạn đang học lớp 7 nên mik sẽ giải kiểu lớp 7 nha
mỗi câu mik chia làm 2 bài nhé!
Bài 1. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)
(a) \(x + 3 y - x \sqrt{5} = y \sqrt{5} + 7\)
\(\Rightarrow - \left(\right. x + y \left.\right) \sqrt{5} = 7 - x - 3 y\).
Vế trái vô tỉ (nếu \(x + y \neq 0\)), vế phải hữu tỉ.
\(\Rightarrow x + y = 0 , \textrm{ }\textrm{ } 7 - x - 3 y = 0\).
\(\Rightarrow x = - y , \textrm{ }\textrm{ } 7 + y - 3 y = 0 \Rightarrow y = \frac{7}{2} , x = - \frac{7}{2}\).
Đáp số: \(\left(\right. - \frac{7}{2} , \frac{7}{2} \left.\right)\).
(b) \(5 x + y - \left(\right. 2 x - 1 \left.\right) \sqrt{7} = y \sqrt{7} + 2\).
\(\Rightarrow - \left(\right. 2 x + y - 1 \left.\right) \sqrt{7} = 2 - 5 x - y\).
\(\Rightarrow 2 x + y - 1 = 0 , \textrm{ }\textrm{ } 2 - 5 x - y = 0\).
Giải hệ:
\(\left{\right. 2 x + y = 1 \\ 5 x + y = 2 \Rightarrow x = \frac{1}{3} , y = \frac{1}{3} .\)
Đáp số: \(\left(\right. \frac{1}{3} , \frac{1}{3} \left.\right)\).
Bài 2. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)
(a) \(x + y + 61 = 10 \sqrt{x} + 12 \sqrt{y}\).
Đặt \(x = a^{2} , y = b^{2}\).
\(\Rightarrow a^{2} + b^{2} + 61 = 10 a + 12 b\).
Thử \(a = 5 , b = 6\): \(25 + 36 + 61 = 122 , \textrm{ }\textrm{ } 10 \cdot 5 + 12 \cdot 6 = 122\).
Đáp số: \(\left(\right. 25 , 36 \left.\right)\).
(b) \(2 x + y + 4 = 2 \sqrt{x} \left(\right. \sqrt{y} + 2 \left.\right)\).
Đặt \(x = a^{2} , y = b^{2}\).
\(\Rightarrow 2 a^{2} + b^{2} + 4 = 2 a b + 4 a\).
\(\Rightarrow \left(\right. a - b \left.\right)^{2} + 2 \left(\right. a - 2 \left.\right) = 0\).
\(\Rightarrow a = 2 , b = 2\).
Đáp số: \(\left(\right. 4 , 4 \left.\right)\).
👉 Vậy:
- Bài 1(a): \(\left(\right. - 7 / 2 , 7 / 2 \left.\right)\).
- Bài 1(b): \(\left(\right. 1 / 3 , 1 / 3 \left.\right)\).
- Bài 2(a): \(\left(\right. 25 , 36 \left.\right)\).
- Bài 2(b): \(\left(\right. 4 , 4 \left.\right)\).
cho mik xin tick nha. Cảm ơn cậu !

Chọn C.
Phương pháp: Đưa bài toán về tìm m để hệ có nghiệm duy nhất.

log x 2 + y 2 + 2 4 x + 4 y - 4 ≥ 1
⇔ 4 x + 4 y - 4 ≥ x 2 + y 2 + 2 ⇔ x - 2 2 + y - 2 2 ≤ 2
Đây là tập hợp tất cả các điểm nằm trên và trong đường tròn tâm I(2;2) bán kính ℝ ' = m .
Ta có I I ' = 10 . m nhỏ nhất để tồn tại duy nhất cặp (x;y) sao cho x 2 + y 2 + 2 x - 2 y + 2 - m = 0 thì hai đường tròn nói trên tiếp xúc ngoài
⇒ R + R ' = I I ' ⇔ m + 2 = 10 ⇔ m = 10 - 2 2
Đáp án cần chọn là B
ta có: \(5-x^2-2x=y^2+2y+2.\)
\(\Leftrightarrow\left(y+1\right)^2+\left(x+1\right)^2=5\)
mà \(\left(y+1\right)^2\ge0;\left(x+1\right)^2\ge0\) nên
\(\left(y+1\right)^2+\left(x+1\right)^2=0+5=1+4=2+3\)
TH1: \(\hept{\begin{cases}\left(y+1\right)^2=0\\\left(x+1\right)^2=5\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=\sqrt{5}-1\end{cases}}}\)
đến đây tự giải đc rồi nha!
xét xong 3 cặp trên thì kết luận vì x,y có vai trò như nhau nên ta có 6 cặp
Võ Thị Quỳnh Giang sai rồi bạn, bài này mình giải được rồi !