cho tam giác ABC,đường tròn tâm I nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F.Gọi K là hinhf chiếu của D trên EF.Chứng minh KD là phân giác BKC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta dễ chứng minh \(\widehat{BIC}=90^o+\dfrac{\widehat{A}}{2}\).
Ta thấy \(\widehat{BFK}=\widehat{A}+\widehat{AEF}=\dfrac{\widehat{A}}{2}+\widehat{IAE}+\widehat{AEF}\) \(=90^o+\dfrac{\widehat{A}}{2}\)
Nên \(\widehat{BIC}=\widehat{BFK}\)
Xét 2 tam giác BIC và BFK, ta có:
\(\widehat{FBK}=\widehat{IBC}\) (do BI là tia phân giác của \(\widehat{FBC}\)) và \(\widehat{BIC}=\widehat{BFK}\left(cmt\right)\)
\(\Rightarrow\Delta BIC~\Delta BFK\left(g.g\right)\) (đpcm)
b) Từ \(\Delta BIC~\Delta BFK\Rightarrow\dfrac{BI}{BF}=\dfrac{BC}{BK}\) \(\Rightarrow\dfrac{BI}{BC}=\dfrac{BF}{BK}\)
Xét 2 tam giác BIF và BCK, ta có
\(\dfrac{BI}{BC}=\dfrac{BF}{BK}\) và \(\widehat{IBF}=\widehat{CBK}\)
\(\Rightarrow\Delta BIF~\Delta BCK\left(c.g.c\right)\)
\(\Rightarrow\widehat{BKC}=\widehat{BFI}\)
Mà \(\widehat{BFI}=90^o\) nên \(\widehat{BKC}=90^o\) (đpcm)
Gọi T là giao điểm của EF và BC. Gọi J là trung điểm DT. Khi đó vì \(\widehat{TKD}=90^o\) nên \(K\in\left(J,JD\right)\). Đặt \(JB=b,JC=c,JD=JT=d\).
Dễ thấy \(AE=AF,BF=BD,CD=CE\) nên \(\dfrac{FA}{FB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=1\)
Hơn nữa, áp dụng định lý Menelaus cho tam giác ABC với cát tuyến EFT, ta có: \(\dfrac{FA}{FB}.\dfrac{TB}{TC}.\dfrac{EC}{EA}=1\)
Từ đó suy ra \(\dfrac{DB}{DC}=\dfrac{TB}{TC}\)
\(\Leftrightarrow\dfrac{JD-JB}{JC-JD}=\dfrac{JB+JT}{JC+JT}\)
\(\Leftrightarrow\dfrac{d-b}{c-d}=\dfrac{b+d}{c+d}\)
\(\Leftrightarrow\left(d-b\right)\left(c+d\right)=\left(c-d\right)\left(b+d\right)\)
\(\Leftrightarrow cd+d^2-bc-bd=bc+cd-bd-d^2\)
\(\Leftrightarrow2d^2=2bc\)
\(\Leftrightarrow JD^2=JB.JC=JK^2\) \(\left(vìJD=JK\right)\)
\(\Leftrightarrow\dfrac{JK}{JC}=\dfrac{JB}{JK}\)
Xét tam giác JBK và JKC, có:
\(\dfrac{JK}{JC}=\dfrac{JB}{JK}\) và \(\widehat{J}\) chung nên
\(\Delta JBK\sim\Delta JKC\left(c.g.c\right)\)
\(\Rightarrow\dfrac{KB}{KC}=\dfrac{JB}{JK}=\dfrac{JB}{JD}=\dfrac{b}{d}\)
Lại có \(d^2=bc\)
\(\Leftrightarrow d^2-bd=bc-bd\)
\(\Leftrightarrow d\left(d-b\right)=b\left(c-d\right)\)
\(\Leftrightarrow\dfrac{b}{d}=\dfrac{d-b}{c-d}\)
Như vậy \(\dfrac{KB}{KC}=\dfrac{b}{d}=\dfrac{d-b}{c-d}=\dfrac{JD-JB}{JC-JD}=\dfrac{DB}{DC}\)
Do đó theo tính chất đường phân giác trong tam giác, KD là phân giác \(\widehat{BKC}\) (đpcm)