giúp mình với các bạn ơi
Tính
B=(1/2^2-1)x(1/3^2-1)x(1/4^2-1)...(1/1000^2-1)
cảm ơn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 21000 - 2999 - 2998 -....- 22 - 2 - 1
A = 21000 - (2999 + 2998 +....+ 22 + 2 + 1)
Đặt B = 2999 + 2998 +...+ 22 + 2 + 1 (1)
2B = 21000 + 2999 +....+ 23 + 22 + 2 (2)
Lấy (2) trừ (1) ta được
B = 21000 - 1
=> A = 21000 - B = 21000 - (21000 - 1) = 21000 - 21000 + 1 = 0 + 1 = 1
Vậy A = 1
a) ( 1/2-1/3-1/6).(1/2+2/3+3/4+...+2017/2018) + 3/4.x = 9/10
0.(1/2+2/3+3/4+...+2017/2018) + 3/4.x = 9/10
0+3/4.x = 9/10
3/4.x = 9/10
x = 9/10: 3/4
x = 6/5
b) x + ( 3/1.3+3/3.5+...+3/13.15) = 11/5
x + 3/2. ( 1-1/3 + 1/3 - 1/5 + ...+ 1/13 - 1/15) = 11/5
x + 3/2. ( 1-1/15) = 11/5
x + 3/2.14/15 = 11/5
x + 7/5 = 11/5
x = 11/5 - 7/5
x = 4/5
(5 - \(x\))(9\(x^2\) - 4) =0
\(\left[{}\begin{matrix}5-x=0\\9x^2-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\9x^2=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x^2=\dfrac{4}{9}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=-\dfrac{2}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) { - \(\dfrac{2}{3}\); \(\dfrac{2}{3}\); \(5\)}
72\(x\) + 72\(x\) + 3 = 344
72\(x\) \(\times\) ( 1 + 73) = 344
72\(x\) \(\times\) (1 + 343) = 344
72\(x\) \(\times\) 344 = 344
72\(x\) = 344 : 344
72\(x\) = 1
72\(x\) = 70
\(2x\) = 0
\(x\) = 0
Kết luận: \(x\) = 0
Dãy số trên có số số hạng là: (khoảng cách mỗi số là $1$ đơn vị)
$(2020-1):1+1=2020$(số hạng)
Tổng của dãy số trên là:
$(2020+1)\times2020:2=2041210$
1+2+3+...+2020=\(\dfrac{\left(2020-1\right):1+1\cdot\left(1+2020\right)}{2}\)=2041210.
A = \(\dfrac{2}{1\times3}\) + \(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\) + \(\dfrac{2}{7\times9}\)
A = \(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}\) + \(\dfrac{1}{7}-\dfrac{1}{9}\)
A = \(\dfrac{1}{1}-\dfrac{1}{9}\)
A = \(\dfrac{8}{9}\)
B = \(\dfrac{1}{3}+\dfrac{1}{15}\) + \(\dfrac{1}{35}+\) \(\dfrac{1}{63}\) + ... + \(\dfrac{1}{195}\)
B = \(\dfrac{1}{1\times3}\) + \(\dfrac{1}{3\times5}\) + \(\dfrac{1}{5\times7}\) + ...+ \(\dfrac{1}{13\times15}\)
B = \(\dfrac{1}{2}\) x (\(\dfrac{2}{1\times3}\) + \(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\) + ..+ \(\dfrac{1}{13}\) - \(\dfrac{1}{15}\))
B = \(\dfrac{1}{2}\) x (\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}-\dfrac{1}{5}\) + ...+\(\dfrac{1}{13}-\dfrac{1}{15}\))
B = \(\dfrac{1}{2}\) x (\(\dfrac{1}{1}-\dfrac{1}{15}\))
B = \(\dfrac{1}{2}\) x \(\dfrac{14}{15}\)
B = \(\dfrac{7}{15}\)
\(B=\left(\dfrac{1}{2^2}-1\right)\cdot\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{1000^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{1000}-1\right)\cdot\left(\dfrac{1}{2}+1\right)\cdot\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{1000}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-999}{1000}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot....\cdot\dfrac{1001}{1000}\)
\(=\dfrac{-1}{1000}\cdot\dfrac{1001}{2}=\dfrac{-1001}{2000}\)
Thanks