tìm x :
[(x+2)2_4]chia hết cho (x+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5.
$4x+3\vdots x-2$
$\Rightarrow 4(x-2)+11\vdots x-2$
$\Rightarrow 11\vdots x-2$
$\Rightarrow x-2\in \left\{1; -1; 11; -11\right\}$
$\Rightarrow x\in \left\{3; 1; 13; -9\right\}$
6.
$3x+9\vdots x+2$
$\Rightarrow 3(x+2)+3\vdots x+2$
$\Rightarrow 3\vdots x+2$
$\Rightarrow x+2\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow x\in \left\{-1; -3; 1; -5\right\}$
7.
$3x+16\vdots x+1$
$\Rightarrow 3(x+1)+13\vdots x+1$
$\Rightarrow 13\vdots x+1$
$\Rightarrow x+1\in \left\{1; -1; 13; -13\right\}$
$\Rightarrow x\in\left\{0; -2; 12; -14\right\}$
8.
$4x+69\vdots x+5$
$\Rightarrow 4(x+5)+49\vdots x+5$
$\Rightarrow 49\vdots x+5$
$\Rightarrow x+5\in\left\{1; -1; 7; -7; 49; -49\right\}$
$\Rightarrow x\in \left\{-4; -6; 2; -12; 44; -54\right\}$
** Bổ sung điều kiện $x$ là số nguyên.
1. $x+9\vdots x+7$
$\Rightarrow (x+7)+2\vdots x+7$
$\Rightarrow 2\vdots x+7$
$\Rightarrow x+7\in \left\{1; -1; 2; -2\right\}$
$\Rightarrow x\in \left\{-6; -8; -5; -9\right\}$
2. Làm tương tự câu 1
$\Rightarrow 9\vdots x+1$
3. Làm tương tự câu 1
$\Rightarrow 17\vdots x+2$
4. Làm tương tự câu 1
$\Rightarrow 18\vdots x+2$
`**x in NN`
`a)x+12 vdots x-4`
`=>x-4+16 vdots x-4`
`=>16 vdots x-4`
`=>x-4 in Ư(16)={+-1,+-2,+-4,+-16}`
`=>x in {3,5,6,2,20}` do `x in NN`
`b)2x+5 vdots x-1`
`=>2x-2+7 vdots x-1`
`=>7 vdots x-1`
`=>x-1 in Ư(7)={+-1,+-7}`
`=>x in {0,2,8}` do `x in NN`
`c)2x+6 vdots 2x-1`
`=>2x-1+7 vdots 2x-1`
`=>7 vdots 2x-1`
`=>2x-1 in Ư(7)={+-1,+-7}`
`=>2x in {0,2,8,-6}`
`=>x in {0,1,4}` do `x in NN`
`d)3x+7 vdots 2x-2`
`=>6x+14 vdots 2x-2`
`=>3(2x-2)+20 vdots 2x-2`
`=>2x-2 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`
Vì `2x-2` là số chẵn
`=>2x-2 in {+-2,+-4,+-10,+-20}`
`=>x-1 in {+-1,+-2,+-5,+-10}`
`=>x in {0,2,3,6,11}` do `x in NN`
Thử lại ta thấy `x=0,x=2,x=6` loại
`e)5x+12 vdots x-3`
`=>5x-15+17 vdots x-3`
`=>x-3 in Ư(17)={+-1,+-17}`
`=>x in {2,4,20}` do `x in NN`
a) Ta có: \(x+12⋮x-4\)
\(\Leftrightarrow16⋮x-4\)
\(\Leftrightarrow x-4\inƯ\left(16\right)\)
\(\Leftrightarrow x-4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)
Vậy: \(x\in\left\{0;5;3;6;2;8;20\right\}\)
b) Ta có: \(2x+5⋮x-1\)
\(\Leftrightarrow7⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{2;0;8;-6\right\}\)
Vậy: \(x\in\left\{0;2;8\right\}\)
c) Ta có: \(2x+6⋮2x-1\)
\(\Leftrightarrow7⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(7\right)\)
\(\Leftrightarrow2x-1\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow2x\in\left\{2;0;8;-6\right\}\)
hay \(x\in\left\{1;0;4;-3\right\}\)
Vậy: \(x\in\left\{0;1;4\right\}\)
d) Ta có: \(3x+7⋮2x-2\)
\(\Leftrightarrow6x+14⋮2x-2\)
\(\Leftrightarrow20⋮2x-2\)
\(\Leftrightarrow2x-2\in\left\{1;-1;2;-2;4;-4;5;-5;10;-10;20;-20\right\}\)
\(\Leftrightarrow2x\in\left\{3;1;4;0;6;-2;7;-3;12;-8;22;-18\right\}\)
\(\Leftrightarrow x\in\left\{\dfrac{3}{2};\dfrac{1}{2};2;0;3;-1;\dfrac{7}{2};-\dfrac{3}{2};6;-4;11;-9\right\}\)
Vậy: \(x\in\left\{2;0;3;6;11\right\}\)
e) Ta có: \(5x+12⋮x-3\)
\(\Leftrightarrow27⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;3;-3;9;-9;27;-27\right\}\)
\(\Leftrightarrow x\in\left\{4;2;6;0;12;-6;30;-24\right\}\)
Vậy: \(x\in\left\{4;2;6;0;12;30\right\}\)
1) \(2⋮x\Rightarrow x\in U\left(2\right)=\left\{1;2\right\}\left(x\inℕ\right)\)
2) \(2⋮\left(x+1\right)\Rightarrow x+1\in U\left(2\right)=\left\{1;2\right\}\Rightarrow x\in\left\{0;1\right\}\left(x\inℕ\right)\)
3) \(2⋮\left(x+2\right)\Rightarrow x+2\in U\left(2\right)=\left\{1;2\right\}\Rightarrow x\in\left\{-1;0\right\}\Rightarrow x\in\left\{0\right\}\left(x\inℕ\right)\)
4) \(2⋮\left(x-1\right)\Rightarrow x-1\in U\left(2\right)=\left\{1;2\right\}\Rightarrow x\in\left\{2;3\right\}\left(x\inℕ\right)\)
1. 2 chia hết cho x
Ta có 2 là số chẵn, nên x phải là số chẵn. Vậy các số tự nhiên x thỏa mãn là x = 2, 4, 6, …
2. 2 chia hết cho (x + 1)
Ta có 2 chia hết cho (x + 1) khi và chỉ khi x + 1 là số chẵn. Điều này tương đương với x là số lẻ. Vậy các số tự nhiên x thỏa mãn là x = 1, 3, 5, …
3. 2 chia hết cho (x + 2)
Ta có 2 chia hết cho (x + 2) khi và chỉ khi x + 2 là số chẵn. Điều này tương đương với x là số chẵn. Vậy các số tự nhiên x thỏa mãn là x = 0, 2, 4, …
4. 2 chia hết cho (x - 1)
Ta có 2 chia hết cho (x - 1) khi và chỉ khi x - 1 là số chẵn. Điều này tương đương với x là số lẻ. Vậy các số tự nhiên x thỏa mãn là x = 3, 5, 7, …
a: 3x+2 chia hết cho x-1
=>3x-3+5 chia hết cho x-1
=>5 chia hết cho x-1
=>x-1 thuộc {1;-1;5;-5}
=>x thuộc {2;0;6;-4}
b: 3x+24 chia hết cho x-4
=>3x-12+36 chia hết cho x-4
=>36 chia hết cho x-4
=>x-4 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36}
=>x thuộc {5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32}
c: x^2+5 chia hết cho x+1
=>x^2-1+6 chia hết cho x+1
=>x+1 thuộc {1;-1;2;-2;3;-3;6;-6}
=>x thuộc {0;-2;1;-3;2;-4;5;-7}
d: x^2-5x+1 chia hết cho x-5
=>1 chia hết cho x-5
=>x-5 thuộc {1;-1}
=>x thuộc {6;4}
1,
a, x + 1 ⋮ 16
=> x + 1 thuộc B(16)
=> x + 1 thuộc {0;; 16; 32; 64;....}
=> x thuộc {-1; 15; 31; 63; ...}
các phần còn lại làm tương tự
a; \(x\) + 6 ⋮ \(x\) + 1 (\(x\) ≠ - 1)
\(x\) + 1 + 5 ⋮ \(x\) + 1
\(x\) + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
\(x\) \(\in\) {-6; -2; 0; 4}
\(x\) + 6 ⋮ \(x\) + (-1) (\(x\) ≠ 1)
\(x\) + - 1 + 7 ⋮ \(x\) - 1
7 ⋮ \(x\) - 1
\(x\) - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
\(x\) \(\in\) {-6; 0; 2; 8}
b; \(x\) + 6 ⋮ \(x\) - 2 (đk \(x\) ≠ 2)
\(x\) - 2 + 8 ⋮ \(x\) - 2
8 ⋮ \(x\) - 2
\(x\) - 2 \(\in\) Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
\(x\) \(\in\) {-6; -2; 0; 1; 3; 4; 10}
\(x\) + 6 ⋮ \(x\) + (-2)
\(x\) + 6 ⋮ \(x\) - 2
giống với ý trên
\(y+2⋮x;x+2⋮y\Rightarrow\left(x+2\right)\left(y+2\right)⋮xy\Rightarrow xy+2x+2y+4⋮xy\Rightarrow2x+2y+4⋮xy\)
\(\Rightarrow2\left(x+y+2\right)⋮xy\Rightarrow2⋮xy\Rightarrow xy\inƯ\left(2\right)=1;2\)
\(xy=1\Rightarrow x=1,y=1\Rightarrow y+2=1+2=3⋮x=1\Rightarrow y+2⋮x\)
\(x+2=1+2=3⋮y=1\Rightarrow x+2⋮y\)
\(\Rightarrow x=1,y=1\left(tm\right)\)
\(xy=2\Rightarrow x=1,y=2;x=2,y=1\Rightarrow x+2=1+2=3\)ko chia hết cho \(y=2\Rightarrow x+2\)ko chia hết cho y
\(\Rightarrow x=1,y=2\left(ktm\right)\Rightarrow x=2,y=1\left(ktm\right)\)
vậy x=1,y=1
a)<=>(x+1)+2 chia hết x+1
=>2 chia hết x+1
=>x+1\(\in\){1,-1,2,-2}
=>x\(\in\){0,-2,1,-3}
b)<=>3(x-2)+7 chia hết x-2
=>7 chia hết x-2
=>x-2\(\in\){1,-1,7,-7}
=>x\(\in\){3,1,9,-5}
c,d,e tương tự