cho hình thang MNPQ(MN//PQ) kẻ đường thẳng vuông góc vs NPtại P và đường thẳng vuông góc tại NQ tại Q. 2 đường này cắt nhau tại E. Chứng minh rằng nếu EP = EQ thì hình thang MNPQ là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. xét tam giác NIP vuônh tại I suy ra IP=căn của(15^2-12^2)=9
b. xét tam giác QNP có NI vuông góc với QP
mà 12^2=16*9 suy ra NI^2=QI*IP suy ra tam giác QNP vuông tại N suy ra QN vuông góc với NP
( dùng đảo của hệ thức lượng) bạn có thể dùng đảo pitago bằng cách tính NQ
c.từ M hạ đường cao MF
tính tương tự câu a ta được QF=9
suy ra FI=16-9=7
MN // FI ( MNPQ là hình thang cân) và MF//NI( cùng vuông góc với QP) suy ra MNIF là hình bình hành
suy ra MN=FI=7
suy ra Smnpq=(MN+PQ)*NP/2=240
d. theo chứng minh câu b suy ra tam giác NPQ vuông tại N mà E là trung điểm của QP suy ra EQ=EN suy ra tam giác EQN cân tại E suy ra góc NQE = góc ENQ
mà ENQ= góc PNK ( cùng phụ góc ENP) suy ra góc NQE= góc ENQ
xét tam giác QNK và tam giác NPK có
góc NKP chung
gcs NQE= góc ENQ
suy ra 2 tam giác đồng dạng
suy ra KN/KP=KQ/KN
suy ra KN^2=KP.KQ
k cho minh nnha
Gọi O là giao của AC và BD
Xét ΔODE vuông tại D và ΔOCE vuông tại C có
OE chung
ED=EC
Do đó: ΔODE=ΔOCE
=>OD=OC
Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc OBA=góc ODC
=>ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD
mà OC=OD
nên OA=OB
AC=AO+OC
BD=BO+OD
mà AO=BO và CO=DO
nên AC=BD
Xét tứ giác ABCD có
AB//CD
AC=BD
Do đó: ABCD là hình thang cân
a: Xét tứ giác MNKP có
MN//KP
MP//NK
=>MNKP là hình bình hành
=>MP=NK
mà MP=NQ
nên NK=NQ
=>ΔNKQ cân tại N
b: MNKP là hbh
=>góc K=góc NMP
=>góc K=góc MPQ
=>góc MPQ=góc NQP
Xét ΔMQP và ΔNPQ có
MP=NQ
góc MPQ=góc NQP
QP chung
=>ΔMQP=ΔNPQ
c: ΔMQP=ΔNPQ
=>góc MQP=góc NPQ
=>MNPQ là hình thang cân
a: Hình thang MNPQ có MP=NQ
nên MNPQ là hình thang cân
b: Xét tứ giác MNKP có
MN//KP
MP//KN
Do đó: MNKP là hình bình hành
Suy ra: MP=NK
mà MP=NQ
nên NK=NQ
hay ΔNKQ cân tại N
a: Xét tứ giác MQAP có
MQ//AP
MP//AQ
Do đó: MQAP là hình bình hành
ta có MNPQ là hình thang=>MN//PQ
mà \(=\angle\left(NMP\right)=\angle\left(MNQ\right)=>\angle\left(NQP\right)=\angle\left(MPQ\right)\)
=>tam giác MNO cân tại O=>MO=NO
=>tam giác QOP cân tại O=>OQ=Op
=>MO+OP=NO+OQ=>NQ=MP
=>MNPQ là hình thang cân
\(=>\angle\left(M\right)=\angle\left(N\right)\left(1\right)\)
\(\angle\left(Q\right)=\angle\left(P\right)\left(2\right)\)
mà EF//PQ=>EF//MN
=>MNFE là hình thang(3)
từ (1)(3)=>MNFE là hình thang cân
=>EFPQ là hình thang(4)
(2)(4)=>EFPQ là hình thang cân
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Xét ΔOPQ có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOPQ cân tại O
Ta có: OM+OP=MP
ON+OQ=QN
mà OM=ON
và OP=OQ
nên MP=QN
Hình thang MNPQ có MP=QN
nên MNPQ là hình thang cân
Suy ra: \(\widehat{EMN}=\widehat{FNM}\) và \(\widehat{EQP}=\widehat{FPQ}\)
Hình thang EMNF có \(\widehat{EMN}=\widehat{FNM}\)
nên EMNF là hình thang cân
Hình thang EQPF có \(\widehat{EQP}=\widehat{FPQ}\)
nên EQPF là hình thang cân