d\(\dfrac{13}{27}và\dfrac{27}{41}\) đ\(\dfrac{1119}{1999}và\dfrac{1999}{2000}\) c\(\dfrac{1}{a+1}và\dfrac{1}{a-1}\) a\(\dfrac{14}{25}và\dfrac{5}{7}\) Tất cả đều so sánh bằng cách hợp lý nhất nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{-1}{20}=\dfrac{-7}{140}\)
\(\dfrac{5}{7}=\dfrac{100}{140}\)
mà -7<100
nên \(-\dfrac{1}{20}< \dfrac{5}{7}\)
b) \(\dfrac{216}{217}< 1\)
\(1< \dfrac{1164}{1163}\)
nên \(\dfrac{216}{217}< \dfrac{1164}{1163}\)
c) \(\dfrac{-12}{17}=\dfrac{-180}{255}\)
\(\dfrac{-14}{15}=\dfrac{-238}{255}\)
mà -180>-238
nên \(-\dfrac{12}{17}>\dfrac{-14}{15}\)
d) \(\dfrac{27}{29}>0\)
\(0>-\dfrac{2727}{2929}\)
nên \(\dfrac{27}{29}>-\dfrac{2727}{2929}\)
a) Ta có: \(\dfrac{39}{-65}=\dfrac{-39}{65}=\dfrac{-39:13}{65:13}=\dfrac{-3}{5}\)
\(\dfrac{-3}{5}=\dfrac{-3}{5}\)
Do đó: \(\dfrac{-3}{5}=\dfrac{39}{-65}\)
b) Ta có: \(\dfrac{-9}{27}=\dfrac{-9:9}{27:9}=\dfrac{-1}{3}\)
\(\dfrac{-41}{123}=\dfrac{-41:41}{123:41}=\dfrac{-1}{3}\)
Do đó: \(\dfrac{-9}{27}=\dfrac{-41}{123}\)
c) Ta có: \(\dfrac{-3}{4}=\dfrac{-3\cdot5}{4\cdot5}=\dfrac{-15}{20}\)
\(\dfrac{4}{-5}=\dfrac{-4}{5}=\dfrac{-4\cdot4}{5\cdot4}=\dfrac{-16}{20}\)
mà \(\dfrac{-15}{20}>\dfrac{-16}{20}\)
nên \(\dfrac{-3}{4}>\dfrac{4}{-5}\)
d) Ta có: \(\dfrac{2}{-3}=\dfrac{-2}{3}=\dfrac{-2\cdot7}{3\cdot7}=\dfrac{-14}{21}\)
\(\dfrac{-5}{7}=\dfrac{-5\cdot3}{7\cdot3}=\dfrac{-15}{21}\)
mà \(\dfrac{-14}{21}>\dfrac{-15}{21}\)
nên \(\dfrac{2}{-3}>\dfrac{-5}{7}\)
a) \(5\dfrac{4}{23}.27\dfrac{3}{47}+4\dfrac{3}{47}.\left(-5\dfrac{4}{23}\right)\)
\(=5\dfrac{4}{23}.27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right).5\dfrac{4}{23}\)
\(=5\dfrac{4}{23}.\left[27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right)\right]\)
\(=5\dfrac{4}{23}.\left(27\dfrac{3}{47}-4\dfrac{3}{27}\right)\)
\(=5\dfrac{4}{23}.23\)
\(=\dfrac{119}{23}.23\)
\(=\dfrac{119}{23}\)
b) \(4.\left(\dfrac{-1}{2}\right)^3+\dfrac{3}{2}\)
\(=4.\dfrac{-1}{6}+\dfrac{3}{2}\)
\(=\dfrac{-4}{6}+\dfrac{3}{2}\)
\(=\dfrac{-2}{3}+\dfrac{3}{2}\)
\(=\dfrac{-4}{6}+\dfrac{9}{6}\)
\(=\dfrac{5}{6}\)
c) \(\left(\dfrac{1999}{2011}-\dfrac{2011}{1999}\right)-\left(\dfrac{-12}{1999}-\dfrac{12}{2011}\right)\)
\(=\dfrac{1999}{2011}-\dfrac{2011}{1999}-\dfrac{-12}{1999}+\dfrac{12}{2011}\)
\(=\left(\dfrac{1999}{2011}+\dfrac{12}{2011}\right)-\left(\dfrac{2011}{1999}+\dfrac{-12}{1999}\right)\)
\(=\dfrac{2011}{2011}-\dfrac{1999}{1999}\)
\(=1-1\)
\(=0\)
d) \(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
(đợi đã, mình chưa tìm được hướng làm...)
Bài 1:
a) Ta có: \(13A=\dfrac{13^{16}+13}{13^{16}+1}=1+\dfrac{12}{13^{16}+1}\)
\(13B=\dfrac{13^{17}+13}{13^{17}+1}=1+\dfrac{12}{13^{17}+1}\)
Vì \(\dfrac{12}{13^{16}+1}>\dfrac{12}{13^{17}+1}\Rightarrow1+\dfrac{12}{13^{16}+1}>1+\dfrac{12}{13^{17}+1}\)
\(\Rightarrow13A>13B\)
\(\Rightarrow A>B\)
Vậy A > B
b) Ta có: \(1999C=\dfrac{1999^{2000}+1999}{1999^{2000}+1}=1+\dfrac{1998}{1999^{2000}+1}\)
\(1999D=\dfrac{1999^{1999}+1999}{1999^{1999}+1}=1+\dfrac{1998}{1999^{1999}+1}\)
\(\dfrac{1998}{1999^{2000}+1}< \dfrac{1998}{1999^{1999}+1}\Rightarrow1+\dfrac{1998}{1999^{2000}+1}< 1+\dfrac{1999}{1999^{1999}+1}\)
\(\Rightarrow1999C< 1999D\)
\(\Rightarrow C< D\)
Vậy C < D
\(E=\dfrac{\left(\dfrac{53}{4}-\dfrac{59}{27}-\dfrac{65}{6}\right).\dfrac{5751}{25}+\dfrac{187}{4}}{\left(\dfrac{10}{7}+\dfrac{10}{3}\right):\left(\dfrac{37}{3}-\dfrac{100}{7}\right)}\)
\(=\dfrac{\dfrac{25}{108}.\dfrac{5751}{25}+\dfrac{187}{4}}{\dfrac{100}{21}:\left(\dfrac{-44}{21}\right)}\)
\(=\dfrac{53,25+\dfrac{187}{4}}{\dfrac{-25}{11}}\)
\(=\dfrac{100}{\dfrac{-25}{11}}\)
\(=-44\)
\(a.\dfrac{-4}{7}-\dfrac{5}{13}\times\dfrac{-39}{25}+\dfrac{-1}{42}:\dfrac{-5}{6}\)
\(=\dfrac{-4}{7}+\dfrac{3}{5}+\dfrac{1}{35}\) \(=\dfrac{1}{35}+\dfrac{1}{35}=\dfrac{2}{35}\)
\(b.\dfrac{2}{9}\times\left[\dfrac{4}{5}:\left(\dfrac{1}{5}-\dfrac{2}{15}\right)+1\dfrac{2}{3}\right]-\dfrac{-5}{27}\)
\(=\dfrac{2}{9}\times\left[\dfrac{4}{5}:\dfrac{1}{15}+\dfrac{5}{3}\right]-\dfrac{-5}{27}\)
\(=\dfrac{2}{9}\times\left(12+\dfrac{5}{3}\right)-\dfrac{-5}{27}\)
\(=\dfrac{2}{9}\times\dfrac{41}{3}-\dfrac{-5}{27}=\dfrac{82}{27}-\dfrac{-5}{27}=\dfrac{29}{9}\)
d: \(\dfrac{13}{27}< \dfrac{13}{26}=\dfrac{1}{2}\)
\(\dfrac{1}{2}=\dfrac{20,5}{41}< \dfrac{27}{41}\)
Do đó: \(\dfrac{13}{27}< \dfrac{27}{41}\)
c: a+1>a-1
=>\(\dfrac{1}{a+1}< \dfrac{1}{a-1}\)
a: \(\dfrac{14}{25}=0,56;\dfrac{5}{7}=0,\left(714285\right)\)
mà 0,56<0,(714285)
nên \(\dfrac{14}{25}< \dfrac{5}{7}\)
a)
\(\dfrac{14}{25}< \dfrac{14}{21}=\dfrac{2}{3}\)
\(\dfrac{15}{21}>\dfrac{14}{21}\) hay \(\dfrac{5}{7}>\dfrac{2}{3}\)
\(\dfrac{14}{25}< \dfrac{5}{7}\)
c) \(a+1>a-1\)
\(\dfrac{1}{a+1}< \dfrac{1}{a-1}\)
đ) \(\dfrac{1119}{1999}=1-\dfrac{880}{1999};\dfrac{1999}{2000}=1-\dfrac{1}{2000}\)
Mà: \(\dfrac{880}{1999}>\dfrac{1}{2000}\) (vì 1999 < 2000 và 880 > 1)
\(1-\dfrac{880}{1999}< 1-\dfrac{1}{2000}\)
\(\dfrac{1119}{1999}< \dfrac{1999}{2000}\)
d) Ta có:
\(\dfrac{13}{27}< \dfrac{13,5}{27}=\dfrac{1}{2}\)
\(\dfrac{27}{41}>\dfrac{20,5}{41}=\dfrac{1}{2}\)
\(\dfrac{13}{27}< \dfrac{27}{41}\)