cho hình bình hành ABCD ( AC lớn BD ) . kẻ CE vuông góc với đường thẳng AB tại E , CF vuông góc với AD tại F , BH vuông góc với đường thẳng AC tại H . gọi Q , K thứ tự là giao điểm của tia BH với các đường thẳng CD và AD . biết BC cắt HE ở i chứng minh : 1) tam giá ABH đồng dạng với ACE và AB nhân AE = AH nhân AC 2) tam giác IEB đồng dạng tam giác ICH 3) BH nhân BH = HK nhân HQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEC vuông tại E và ΔAHB vuông tại H có
góc EAC chung
=>ΔAEC đồng dạng với ΔAHB
=>AE/AH=AC/AB
=>AE*AB=AC*AH
b: Xét ΔCBH vuông tại H và ΔACF vuông tại F có
góc BCH=góc CAF
=>ΔCBH đồng dạng với ΔACF
a: Sửa đề: AD=6cm
BC=AD=6cm
CD=AB=8cm
BD=căn 6^2+8^2=10cm
Xét ΔBCD vuông tại C có sin DBC=DC/BD=8/10=4/5
nên góc DBC=53 độ
=>góc BDC=37 độ
b: CH=6*8/10=4,8cm
BH=BC^2/BD=6^2/10=3,6cm
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
a: ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(AC^2=4^2+3^2=25\)
=>AC=5(cm)
Xét ΔBAC vuông tại B có BH là đường cao
nên \(BH\cdot AC=BA\cdot BC\)
=>BH*5=3*4=12
=>BH=2,4(cm)
Xét ΔBAC vuông tại B có
\(sinBAC=\dfrac{BC}{AC}=\dfrac{3}{5}\)
=>\(\widehat{BAC}\simeq37^0\)
b: Xét ΔABE vuông tại A có AH là đường cao
nên \(BH\cdot BE=BA^2\)(1)
Xét ΔABC vuông tại B có BH là đường cao
nên \(AH\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)
c: Xét ΔBHC vuông tại H và ΔBFE vuông tại F có
\(\widehat{HBC}\) chung
Do đó: ΔBHC\(\sim\)ΔBFE
=>\(\dfrac{BH}{BF}=\dfrac{BC}{BE}\)
=>\(\dfrac{BH}{BC}=\dfrac{BF}{BE}\)
Xét ΔBHF và ΔBCE có
BH/BC=BF/BE
\(\widehat{HBF}\) chung
Do đó: ΔBHF\(\sim\)ΔBCE
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}=\widehat{CAK}\)
Do đó: ΔABH=ΔACK
a,\(\Delta AHB\&\Delta AEC\)có: \(\widehat{A}chung,\widehat{AEC}=\widehat{AHB}=90^o\)
\(\Rightarrow\Delta AHB\infty\Delta AEC\left(g.g\right)\Rightarrow\frac{AH}{AE}=\frac{AB}{AC}\Rightarrow AB.AE=AH.AC\)
b,\(\Delta AKD\&\DeltaÀFC\)CÓ: \(\widehat{A}chung,\widehat{AFC}=\widehat{AKD}=90^o\)
\(\Rightarrow\Delta AKD\infty\DeltaÀFC\left(g.g\right)\Rightarrow\frac{AK}{AF}=\frac{AD}{AC}\Rightarrow AD.AF=AK.AC\)
c, Vì ABCD là hbh => AB=DC
--------------------- => AB//CD => GÓC BAC=ACD (SO LE TRONG)
Xét tam giác ABH và tam giác CDK có:
Tam giác ABH vuông tại H
----------- CDK ------------- K
cạnh huyền AB=CD
góc nhọn BAC=ACD
=> tam giác ABH = tam giác CDK
=> AH=KC
ta có: AC = AH + HC
Mà: AH=KC
=> AC = AH+HK+AH
=> AC = AH + AK
Ta có: AB.AE+AD.AF = AH.AC+AK.AC = AC.(AH+AK) = AC.AC = AC2
a: BD=căn 8^2+6^2=10cm
Xét ΔBCD vuông tại C có sin DBC=CD/BD=3/5
=>góc DBC=37 độ
=>góc BDC=53 độ
b: CH=8*6/10=4,8cm
BH=BC^2/BD=64/10=6,4cm
1) Xét hai tam giác vuông: ∆ABH và ∆ACE có:
∠A chung
∆ABH ∽ ∆ACE (g-g)
⇒ AB.AE = AH.AC
b) Sửa đề: ∆IBE ∽ ∆ICH
∆ACE vuông tại E
⇒ ∠BCE + ∠BCA = 90⁰
⇒ ∠BCE + ∠ICH = 90⁰
∆BCE vuông tại E
⇒ ∠BCE + ∠CBE = 90⁰
⇒ ∠BCE + ∠IBE = 90⁰
Mà ∠BCE + ∠ICH = 90⁰ (cmt)
⇒ ∠IBE = ∠ICH
Xét ∆IBE và ∆ICH có:
∠BIE = ∠CIH (đối đỉnh)
∠IBE = ∠ICH (cmt)
⇒ ∆IBE ∽ ∆ICH (g-g)
c) Do ABCD là hình bình hành (gt)
⇒ AB // CD và AD // BC
⇒ AB // CQ
Theo hệ quả của định lý Thales
Do AD // BC (cmt)
⇒ AK // BC
Theo hệ quả của định lý Thales
Từ (1) và (2)
⇒ HB.HB = HK.HQ
Hay BH.BH = HK.HQ