K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6

loading... 

1) Xét hai tam giác vuông: ∆ABH và ∆ACE có:

∠A chung

∆ABH ∽ ∆ACE (g-g)

loading... ⇒ AB.AE = AH.AC

b) Sửa đề: ∆IBE ∽ ∆ICH

∆ACE vuông tại E

⇒ ∠BCE + ∠BCA = 90⁰

⇒ ∠BCE + ∠ICH = 90⁰

∆BCE vuông tại E

⇒ ∠BCE + ∠CBE = 90⁰

⇒ ∠BCE + ∠IBE = 90⁰

Mà ∠BCE + ∠ICH = 90⁰ (cmt)

⇒ ∠IBE = ∠ICH

Xét ∆IBE và ∆ICH có:

∠BIE = ∠CIH (đối đỉnh)

∠IBE = ∠ICH (cmt)

⇒ ∆IBE ∽ ∆ICH (g-g)

c) Do ABCD là hình bình hành (gt)

⇒ AB // CD và AD // BC

⇒ AB // CQ

Theo hệ quả của định lý Thales

loading...

Do AD // BC (cmt)

⇒ AK // BC

Theo hệ quả của định lý Thales

loading... Từ (1) và (2)

loading... ⇒ HB.HB = HK.HQ

Hay BH.BH = HK.HQ

a: Xét ΔAEC vuông tại E và ΔAHB vuông tại H có

góc EAC chung

=>ΔAEC đồng dạng với ΔAHB

=>AE/AH=AC/AB

=>AE*AB=AC*AH

b: Xét ΔCBH vuông tại H và ΔACF vuông tại F có

góc BCH=góc CAF

=>ΔCBH đồng dạng với ΔACF

 

a: Sửa đề: AD=6cm

BC=AD=6cm

CD=AB=8cm

BD=căn 6^2+8^2=10cm

Xét ΔBCD vuông tại C có sin DBC=DC/BD=8/10=4/5

nên góc DBC=53 độ

=>góc BDC=37 độ

b: CH=6*8/10=4,8cm

BH=BC^2/BD=6^2/10=3,6cm

 

4 tháng 7 2023

Sao lại sửa đề ạ?

16 tháng 12 2021

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

29 tháng 10 2023

a: ΔABC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(AC^2=4^2+3^2=25\)

=>AC=5(cm)

Xét ΔBAC vuông tại B có BH là đường cao

nên \(BH\cdot AC=BA\cdot BC\)

=>BH*5=3*4=12

=>BH=2,4(cm)

Xét ΔBAC vuông tại B có

\(sinBAC=\dfrac{BC}{AC}=\dfrac{3}{5}\)

=>\(\widehat{BAC}\simeq37^0\)

b: Xét ΔABE vuông tại A có AH là đường cao

nên \(BH\cdot BE=BA^2\)(1)

Xét ΔABC vuông tại B có BH là đường cao

nên \(AH\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)

c: Xét ΔBHC vuông tại H và ΔBFE vuông tại F có

\(\widehat{HBC}\) chung

Do đó: ΔBHC\(\sim\)ΔBFE

=>\(\dfrac{BH}{BF}=\dfrac{BC}{BE}\)

=>\(\dfrac{BH}{BC}=\dfrac{BF}{BE}\)

Xét ΔBHF và ΔBCE có

BH/BC=BF/BE

\(\widehat{HBF}\) chung

Do đó: ΔBHF\(\sim\)ΔBCE

 

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0

Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC

\(\widehat{BAH}=\widehat{CAK}\)

Do đó: ΔABH=ΔACK

A B C D F K H E

a,\(\Delta AHB\&\Delta AEC\)có:  \(\widehat{A}chung,\widehat{AEC}=\widehat{AHB}=90^o\)

\(\Rightarrow\Delta AHB\infty\Delta AEC\left(g.g\right)\Rightarrow\frac{AH}{AE}=\frac{AB}{AC}\Rightarrow AB.AE=AH.AC\)

b,\(\Delta AKD\&\DeltaÀFC\)CÓ: \(\widehat{A}chung,\widehat{AFC}=\widehat{AKD}=90^o\)

\(\Rightarrow\Delta AKD\infty\DeltaÀFC\left(g.g\right)\Rightarrow\frac{AK}{AF}=\frac{AD}{AC}\Rightarrow AD.AF=AK.AC\)

c, Vì ABCD là hbh => AB=DC

   --------------------- => AB//CD => GÓC BAC=ACD (SO LE TRONG)

Xét tam giác ABH  và tam giác CDK có:

Tam giác ABH vuông tại H

----------- CDK ------------- K

cạnh huyền AB=CD

góc nhọn BAC=ACD

=> tam giác ABH = tam giác CDK

=> AH=KC

ta có: AC = AH + HC

Mà: AH=KC

=> AC = AH+HK+AH

=> AC = AH + AK

Ta có: AB.AE+AD.AF = AH.AC+AK.AC = AC.(AH+AK) = AC.AC = AC2 

a: BD=căn 8^2+6^2=10cm

Xét ΔBCD vuông tại C có sin DBC=CD/BD=3/5

=>góc DBC=37 độ

=>góc BDC=53 độ

b: CH=8*6/10=4,8cm

BH=BC^2/BD=64/10=6,4cm