Cho biểu thức: N=
a) Rút gọn N
b) Tìm giá trị của a để N = - 2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)
a) Ta có: \(N=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)
=1-a
b) Ta có: N=-2016
nên 1-a=-2016
\(\Leftrightarrow a-1=2016\)
hay a=2017(thỏa ĐK)
ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)
1) Ta có: \(N=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)
\(=\left(1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)
\(=1-a\)
2) Để N=-2016 thì 1-a=-2016
\(\Leftrightarrow1-a+2016=0\)
\(\Leftrightarrow2017-a=0\)
hay a=2017(thỏa ĐK)
Vậy: Để N=-2016 thì a=2017
a: \(A=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
\(ĐK:a>0;a\ne1;a\ne4\\ a,A=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,A>0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow a>4\)
Ta có: \(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}}{4-\sqrt{a}}\)
a) ĐKXĐ: \(a\ne4;a\ne16;a\ge0\)
\(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}-\dfrac{4\sqrt{a}}{\sqrt{a}-4}\)
\(P=\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(P=\dfrac{a+3\sqrt{a}+2\sqrt{a}+6-a+2\sqrt{a}+\sqrt{a}-2-4\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
\(P=\dfrac{4\sqrt{a}+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
\(P=\dfrac{4\sqrt{a}+4}{a-4}\)
b) Thay x=9 vào P ta có:
\(P=\dfrac{4\cdot\sqrt{9}+4}{9-4}=\dfrac{16}{5}\)
c) \(P< 0\) khi:
\(\dfrac{4\sqrt{x}+4}{a-4}< 0\)
Mà: \(4\sqrt{x}+4>0\)
\(\Rightarrow a-4< 0\)
\(\Rightarrow a< 4\)
kết hợp với Đk ta có:
\(0\le x< 4\)
a: Sửa đề: \(B=\left(\dfrac{2a}{a+3}+\dfrac{2}{3-a}+\dfrac{3}{a^2-9}\right):\dfrac{a+1}{a-3}\)
\(=\dfrac{2a^2-6a-2a-6+3}{\left(a-3\right)\left(a+3\right)}\cdot\dfrac{a-3}{a+1}=\dfrac{2a^2-8a-3}{\left(a+3\right)\left(a+1\right)}\)
b: |a|=2
=>a=2 hoặc a=-2
Khi a=2 thì \(B=\dfrac{2\cdot2^2-8\cdot2-3}{\left(2+3\right)\left(2+1\right)}=\dfrac{-11}{15}\)
Khi a=-2 thì \(B=\dfrac{2\cdot\left(-2\right)^2-8\cdot\left(-2\right)-3}{\left(-2+3\right)\left(-2+1\right)}=-21\)
C = a 2 − a a + a + 1 − a 2 + a a − a + 1 + a + 1 ( D K : a ≥ 0 ) C = a ( a ) 3 − 1 a + a + 1 − a ( a ) 3 + 1 a − a + 1 + a + 1 = a ( a − 1 ) − a ( a + 1 ) + a + 1 = a − a − a − a + a + 1 = a - 1 2