K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

GTLN(B)=0

17 tháng 4 2016

M lớn nhất khi (x+1995)^2 nhỏ nhất

  • \(\Leftrightarrow\)x+1995=1

\(\Rightarrow x=-1994\)

  • x+1995=-1

     x=-1996. 

sau đó thử lại đi nhá

18 tháng 4 2016

Hà lê sai hoàn toàn

4 tháng 7 2020

Bạn có thể tham khảo ở đây: https://olm.vn/hoi-dap/detail/99503384500.html
Thông tin đến bạn!

19 tháng 2 2019

a) \(-ĐKXĐ:x\ne\pm2;1\)

Rút gọn : \(A=\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)

\(=\left(\frac{1}{x+2}+\frac{-2}{x-2}+\frac{x}{x^2-4}\right).\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\left[\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(x+2\right)}\right]\)\(.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\left[\frac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\right].\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)\(=\frac{x+1}{\left(x+2\right)^2}\)

b) \(A>0\Leftrightarrow\frac{x+1}{\left(x+2\right)^2}>0\Leftrightarrow\orbr{\begin{cases}x+1< 0;\left(x+2\right)^2< 0\left(voly\right)\\x+1>0;\left(x+2\right)^2>0\end{cases}}\)

\(\Leftrightarrow x>1;x>-2\Leftrightarrow x>1\)

Vậy với mọi x thỏa mãn x>1 thì A > 0

c) Ta có : \(x^2+3x+2=0\Leftrightarrow x^2+x+2x+2=0\)

\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

Vậy x = -1;-2

10 tháng 2 2018

a, Xét : 3 - E = 3x^3-3xy-3y^3-x^3-xy-y^2/x^2-xy+y^2

= 2x^2-4xy+2y^2/x^2-xy+y^2

= 2.(x^2-2xy+y^2)/x^2-xy+y^2

= 2.(x-y)^2/x^2-xy+y^2 

>= 0 ( vì x^2-xy+y^2 > 0 )

Dấu "=" xảy ra <=> x-y=0 <=> x=y

Vậy ..........

10 tháng 2 2018

b, Có : (x+1995)^2 = x^2+3990+1995^2 = (x^2-3990x+1995^2)+7980x

= (x-1995)^2 + 7980x >= 7980x

=> M < = x/7980x = 1/7980 ( vì x > 0 )

Dấu "=" xảy ra <=> x-1995=0 <=> x=1995

Vậy ...............

20 tháng 8 2016

a)\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\)

           Vì \(-\left|x+\frac{3}{2}\right|\)\(\le\)0

        Suy ra:\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)

      Dấu = xảy ra khi \(x+\frac{3}{2}=0\)

                                 \(x=-\frac{3}{2}\)

Vậy Max A=\(\frac{1}{4}\) khi \(x=-\frac{3}{2}\)

b)\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\)

        Vì \(-\left|x-\frac{4}{3}\right|\le0;-\left|y+\frac{1}{2}\right|\le0\)

               Suy ra:\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)

     Dấu = xảy ra khi \(x-\frac{4}{3}=0;x=\frac{4}{3}\)

                                 \(y+\frac{1}{2}=0;y=-\frac{1}{2}\)

Vậy Max B=\(\frac{5}{3}\) khi \(x=\frac{4}{3};y=-\frac{1}{2}\)

 

20 tháng 8 2016

a/ Ta có ; \(\left|x+\frac{3}{2}\right|\ge0\Rightarrow-\left|x+\frac{3}{2}\right|\le0\Rightarrow\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)

Vậy BT đạt giá trị lớn nhất bằng 1/4 khi x = -3/2

b/ \(\begin{cases}\left|x-\frac{4}{3}\right|\ge0\\\left|y+\frac{1}{2}\right|\ge0\end{cases}\) \(\Rightarrow\begin{cases}-\left|x-\frac{4}{3}\right|\le0\\-\left|y+\frac{1}{2}\right|\le0\end{cases}\) 

\(\Rightarrow-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le0\)

\(\Rightarrow\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)

Vậy BT đạt giá trị lớn nhất bằng 5/3 khi x = 4/3 , y = -1/2