Cho \(a^3-3ab^2=2\) ; \(b^3-3a^2b=-11\). Tính \(a^2+b^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR :1,a2+b2=<a+b>2-2ab
2,a3+b3=<a+b>3-3ab.<a+b>
3,a3-b3=<a-b>3+3ab.<a+b>
Cho :a+b=1
Tính :A=a3+b3+3ab
2
Ta có:
VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)
=a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)
=a3+b3=VT(dpcm)
1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)
Ta có: (a3 - 3ab2) 2 = a6 - 6a4b2 + 9a2b4 = 25
(b3 - 3a2b)2 = b6 - 6a4b2 + 9a4b2 = 100
⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125
⇔ a6 + 3a4b2 = 3a2b4 + b6 = 125
⇔ (a2 + b2)3 = 125
⇒ a2 + b2 = 5
Ta có: (a3 - 3ab2) 2 = a6 - 6a4b2 + 9a2b4 = 25
(b3 - 3a2b)2 = b6 - 6a4b2 + 9a4b2 = 100
⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125
⇔ a6 + 3a4b2 + 3a2b4 + b6 = 125
⇔ (a2 + b2)3 = 125
⇒ a2 + b2 = 5
Ta có (a3 - 3ab2)2 = a^6 - 6a^4b^2 + 9a^2b^4 = 4
(b^3 - 3a^2b)^2 = b^6 - 6a^2b^4 + 9a^4b^2 = 121
Cộng vế thep vế ta đựơc (a^2 + b^2)^3 = 125
=> a^2 + b^2 = 5
Thế vào 1 trong 2 cái đầu là giải ra
\(a^3-3ab^2=-2\)
\(\Rightarrow\left(a^3-3ab^2\right)^2=4\)
\(\Rightarrow a^6-6a^4b^2+9a^2b^4=4\left(1\right)\)
\(b^3-3a^2b=11\)
\(\Rightarrow\left(b^3-3a^2b\right)^2=121\)
\(\Rightarrow b^6-6a^2b^4+9a^4b^2=121\left(2\right)\)
\(\left(1\right)+\left(2\right)\Rightarrow a^6+3a^4b^2+3a^2b^4+b^6=125\)
\(\Rightarrow\left(a^2+b^2\right)^3=125\Rightarrow a^2+b^2=5\)
Ta có hệ phương trình: a^3 - 3ab^2 = 2,b^3 - 3a^2b = -11
Cộng hai phương trình với nhau ta được:
a^3 - 3ab^2 + b^3 - 3a^2b
= 2 - 11,(a^3 + b^3) - 3ab(a + b)
= -9,(a + b)(a^2 - ab + b^2) - 3ab(a + b)
= -9,(a + b)(a^2 - ab + b^2 - 3ab)
= -9,(a + b)(a^2 - 4ab + b^2) = -9
Ta cần tìm giá trị của a^2 + b^2. Ta có:,(a + b)^2 = a^2 + b^2 + 2ab
Vậy:,a^2 + b^2 = (a + b)^2 - 2ab
Ta có:,a^3 - 3ab^2 = 2,b^3 - 3a^2b = -11
Cộng hai phương trình ta được:
a^3 + b^3 - 3ab(a + b)
= -9,(a + b)(a^2 - ab + b^2) - 3ab(a + b)
= -9,(a + b)(a^2 - ab + b^2 - 3ab)
= -9,(a + b)(a^2 - 4ab + b^2) = -9
Thay a^2 - 4ab + b^2 = -9 vào phương trình (a + b)(a^2 - 4ab + b^2) = -9 ta được:
(a + b)(-9) = -9,a + b = 1
Thay a + b = 1 vào công thức a^2 + b^2 = (a + b)^2 - 2ab
Ta được:,a^2 + b^2 = 1^2 - 2ab,a^2 + b^2 = 1 - 2ab
Vậy để tính a^2 + b^2, chúng ta cần tìm giá trị của ab.
Thay a + b = 1 vào a^3 - 3ab^2 = 2 ta được:
a^3 - 3ab^2 =
2,a^3 - 3a(1 - a)^2
= 2,a^3 - 3a(1 - 2a + a^2)
= 2,a^3 - 3a + 6a^2 - 3a^3
= 2,-2a^3 + 6a^2 - 3a - 2
= 0,2a^3 - 6a^2 + 3a + 2
= 0,2(a^3 - 3a^2 + 3a - 1)
= 0,2(a - 1)^3 = 0
Vậy a = 1 hoặc a = b
Nếu a = 1, ta có:
1 - 3b^2 = 2,-3b^2 = 1,b^2 = -1, không có giá trị thực cho b.
Nếu a = b, ta có:,a^3 - 3a^3 = 2,-2a^3 = 2,a^3 = -1,a = -1
Vậy a = -1, b = -1
Thay a = -1, b = -1 vào a^2 + b^2 = 1 - 2ab ta được:
a^2 + b^2 = 1 - 2(-1)(-1) = 1 - 2 = -1
Vậy kết quả là a^2 + b^2 = -1.