Làm câu vi et thôi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=b^{^2}-4ac=m^{^2}-4\left(3-m\right)=m^{^2}-12+4m=\left(m+2\right)^{^2}-16\)
Phương trình có hai nghiệm phân biệt khi và chỉ khi:
\(\Delta>0\Leftrightarrow\left(m+2\right)^2-16>0\Leftrightarrow m+2>16\Leftrightarrow m>14\\ Viete:\\ x_1+x_2=-\dfrac{b}{a}=m\\ x_1x_2=\dfrac{c}{a}=3-m\)
x1 là nghiệm phương trình nên:
\(x_1^2=mx_1+m-3=m\left(x_1+1\right)-3\\ \Rightarrow\left[m\left(x_1+1\right)-3+3\right]\left(x_2+1\right)=12\\ m\left(x_1+1\right)\left(x_2+1\right)=12\\ m\left(x_1x_2+x_1+x_2+1\right)=12\\ m\left(3-m+m+1\right)=12\\ 4m=12\\ m=3\left(KTM\right)\)
Vậy không tồn tại m thoả đề bài
`a)P(x)+Q(x)=x^5-2x^2+1`
`=>Q(x)=x^5-2x^2+1-P(x)`
`=>Q(x)=x^5-2x^2+1-x^4+3x^2-1/2+x`
`=>Q(x)=x^5-x^4+x^2+x+1/2`
______________________________________________
`b)P(x)-R(x)=x^3`
`=>R(x)=P(x)-x^3`
`=>R(x)=x^4-3x^2+1/2-x-x^3`
`=>R(x)=x^4-x^3-3x^2-x+1/2`
Ta có:
\(P\left(x\right)+Q\left(x\right)=x^5-2x^2+1\)
\(\Rightarrow Q\left(x\right)=P\left(x\right)-\left(x^5-2x^2+1\right)\)
\(=x^4-3x^2+\dfrac{1}{2}-x-x^5+2x^2-1\)
\(=-x^5+x^4-x^2-x-\dfrac{1}{2}\)
Vậy \(Q\left(x\right)=-5^2+x^4-x^2-x-\dfrac{1}{2}\)
1 The gymnast won a total of ten medals at 3 Olympic Games
2 The principal invited a sports star to give a talk at my school yesterday
a/
Ta có
\(AB\perp OA\)
\(AD\perp OD\) (Trong đường tròn đường thẳng đi qua tâm và đi qua trung điểm của dây cung thì vuông góc với dây cung)
=> B và D cùng nhìn AO dưới 1 góc vuông => B và D cùng nằm trên đường tròn đường kính AO tâm I là trung điểm của AO
=> ABOM là tứ giác nội tiếp
b/ Xét \(\Delta ABC\) và \(\Delta ABD\) có
\(\widehat{BAD}\) chung (1)
\(sđ\widehat{ABC}=\dfrac{1}{2}sđ\) cung AC (góc giữa tiếp tuyến và dây cung)
\(sđ\widehat{ADB}=\dfrac{1}{2}sđ\) cung AC (góc nội tiếp đường tròn)
\(\Rightarrow\widehat{ABC}=\widehat{ADB}\) (2)
Từ (1) và (2) => tg ABC đồng dạng với tg ABD
\(\Rightarrow\dfrac{AB}{AD}=\dfrac{AC}{AB}\Rightarrow AB^2=AC.AD\left(đpcm\right)\)
c/ Xét (I) có
\(\widehat{AEO}=90^o\Rightarrow AE\perp OE\)
Mà E là giao của (I) với (O) => \(E\in\left(O\right)\) => OE là bán kính của (O)
=> AE là tiếp tuyến của đường tròn (O)
d/
Xét tg vuông AOB và tg vuông AOE có
AB=AE (Hai tiếp tuyến cùng xp từ 1điểm)
OB=OE=R
=> tg AOB = tg AOE (Hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{AOB}=\widehat{AOE}\)
Xét tg vuông AOB có
\(\cos\widehat{AOB}=\dfrac{OB}{OA}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow\widehat{AOB}=60^0\)
\(\Rightarrow\widehat{BOE}=\widehat{AOB}+\widehat{AOE}=120^o\)
\(\Rightarrow S_{OBE}=\dfrac{\pi R^2.\widehat{BOE}}{360^o}=\dfrac{\pi R^2}{3}\)
3:
1: Δ=5^2-4(3m-1)
=25-12m+4=-12m+29
Để (1) có hai nghiệm thì -12m+29>=0
=>m<=29/12
2:
(x1-x2)^2=(x1+x2)^2-4x1x2
=(-5)^2-4(3m-1)=25-12m+4=29-12m
x1^3-x2^3+3x1x2=75
=>(x1-x2)^3+3x1x2(x1-x2)+3x1x2=75
=>(x1-x2)[(x1+x2)^2-4x1x2+3x1x2]+3x1x2=75
=>(x1-x2)[(-5)^2-(3m-1)]+3(3m-1)=75
=>(x1-x2)[25-3m+1]+9m-3=75
=>(x1-x2)(26-3m)+9m-78=0
=>(3m-26)(-x1+x2+3)=0
=>m=26/3 hoặc -(x1-x2)=-3
=>m=26/3 hoặc x1-x2=3
=>m=26/3 hoặc (x1+x2)^2-4x1x2=9
=>m=26/3 hoặc (-5)^2-4(3m-1)=9
=>m=26/3 hoặc 25-12m+4=9
=>m=26/3 hoặc 12m=29-9=20
=>m=26/3(loại) hoặc m=5/3(loại)
2:
\(\text{Δ}=\left[-\left(2m-1\right)\right]^2-4\cdot1\cdot\left(m^2-m-2\right)\)
\(=4m^2-4m+1-4m^2+4m+8=9>0\)
=>Phương trình luôn có hai nghiệm phân biệt là:
\(\left[{}\begin{matrix}x=\dfrac{2m-1-\sqrt{9}}{2}=\dfrac{2m-1-3}{2}=m-2\\x=\dfrac{2m-1+3}{2}=\dfrac{2m+2}{2}=m+1\end{matrix}\right.\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m-1\\x_1x_2=\dfrac{c}{a}=m^2-m-2\end{matrix}\right.\)
\(\dfrac{x_1^4+x_1^3+m^2-m-2}{x_1}-\dfrac{x_2^4+x_2^3+m^2-m-2}{x_2}=-7m^2+4m+24\)
=>\(x_1^3+x_1^2+\dfrac{x_1x_2}{x_1}-x_2^3-x_2^2-\dfrac{x_1x_2}{x_2}=-7m^2+4m+24\)
=>\(\left(x_1^3-x_2^3\right)+\left(x_1^2-x_2^2\right)+\left(x_2-x_1\right)=-7m^2+4m+24\)
=>\(\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)+\left(x_1-x_2\right)\left(x_1+x_2\right)-\left(x_1-x_2\right)=-7m^2+4m+24\)
=>)\(\left(x_1-x_2\right)\left(x_1^2+x_2x_1+x_2^2+x_1+x_2-1\right)=-7m^2+4m+24\)(1)
TH1: \(x_1=m-2;x_2=m+1\)
(1) sẽ tương đương với:
\(\left(m-2-m-1\right)\left[\left(m-2\right)^2+\left(m-2\right)\left(m+1\right)+\left(m+1\right)^2+m-2+m+1-1\right]=-7m^2+4m+24\)
=>\(-3\left[m^2-4m+4+m^2-m-2+m^2+2m+1+2m-2\right]=-7m^2+4m+24\)
=>\(-3\left(3m^2-m+1\right)+7m^2-4m-24=0\)
=>\(-9m^2+3m-3+7m^2-4m-24=0\)
=>\(-2m^2-m-27=0\)
=>\(m\in\varnothing\)
TH2: \(x_1=m+1;x_2=m-2\)
(1) sẽ trở thành:
\(\left(m+1-m+2\right)\left[\left(m+1\right)^2+\left(m+1\right)\left(m-2\right)+\left(m-2\right)^2+2m-1-1\right]=-7m^2+4m+24\)
=>\(3\left(m^2+2m+1+m^2-m-2+m^2-4m+4+2m-2\right)=-7m^2+4m+24\)
=>\(3\left(3m^2-m+1\right)+7m^2-4m-24=0\)
=>\(9m^2-3m+3+7m^2-4m-24=0\)
=>\(16m^2-7m-21=0\)
=>\(m=\dfrac{7\pm\sqrt{1393}}{32}\)