K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6

  1 + 3 + 5 + ... + n = 251001

Xét dãy số: 1; 3; 5; ...; n

Dãy số trên là dãy số cách đều với khoảng cách là:

          3  - 1 = 2

Số số hạng của dãy số trên là:

        (n - 1) : 2  + 1 = \(\dfrac{n+1}{2}\)

Tổng của dãy số trên là:

     (n + 1) x \(\dfrac{n+1}{2}\) : 2

Theo bài ra ta có:

    (n + 1) \(\times\) \(\dfrac{n+1}{4}\)  = 251001

    (n + 1) \(\times\) (n + 1) = 251001 \(\times\) 4

   (n + 1) \(\times\) (n + 1) = 1004004

       (n + 1)2 =  10022

         \(\left[{}\begin{matrix}n+1=1002\\n+1=-1002\end{matrix}\right.\)

         \(\left[{}\begin{matrix}n=1001\\n=-1003\end{matrix}\right.\)

         n \(\in\) N nên n = 1001 

Vậy n = 1001 

  

 

Đề bài yêu cầu gì?

13 tháng 7 2023

a) \(5^{n+3}-5^{n+1}=5^{12}.120\Leftrightarrow5^{n+1}.\left(5^2-1\right)=5^{12}.5.24\)

\(\Leftrightarrow24.5^{n+1}=5^{13}.24\Leftrightarrow5^{n+1}=5^{13}\Leftrightarrow n+1=13\Leftrightarrow n=12\)

b) \(2^{n+1}+4.2^n=3.2^7\)

\(\Leftrightarrow2^n\left(2+4\right)=3.2^7\Leftrightarrow6.2^n=3.2^7\Leftrightarrow2^n=2^6\Leftrightarrow n=6\)

c) \(3^{n+2}-3^{n+1}=486\)

\(\Leftrightarrow3^{n+1}.\left(3-1\right)=486\Leftrightarrow2.3^{n+1}=486\Leftrightarrow3^{n+1}=243\)

\(\Leftrightarrow3^n=243:3=81=3^3\Leftrightarrow n=3\)

d) \(3^{2n+3}-3^{2n+2}=2.3^{10}\)

\(\Leftrightarrow3^{2n+2}.\left(3-1\right)=2.3^{10}\)

\(\Leftrightarrow3^{2n+2}.2=2.3^{10}\Leftrightarrow3^{2n+2}=3^{10}\Leftrightarrow2n+2=10\Leftrightarrow2n=8\Leftrightarrow n=4\)

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Đề bị lỗi hiển thị rồi. Bạn nên gõ đề bằng công thức toán để mọi người hiểu đề của bạn hơn nhé.

NV
1 tháng 5 2020

\(\lim\limits\frac{3^n+4^n+3}{4^n+2^n-1}=\lim\limits\frac{\left(\frac{3}{4}\right)^n+1+3\left(\frac{1}{4}\right)^n}{1+\left(\frac{2}{4}\right)^n-\left(\frac{1}{4}\right)^n}=\frac{0+1+0}{1+0+0}=1\)

\(\lim\limits\frac{5.2^n+9.3^n}{2.2^n+3.3^n}=\lim\limits\frac{5\left(\frac{2}{3}\right)^n+9}{2.\left(\frac{2}{3}\right)^n+3}=\frac{0+9}{0+3}=3\)

\(\lim\limits\frac{4^n-7^n}{2^n+15^n}=\lim\limits\frac{\left(\frac{4}{15}\right)^n-\left(\frac{7}{15}\right)^n}{\left(\frac{2}{15}\right)^n+1}=\frac{0-0}{0+1}=0\)

\(\lim\limits\frac{6.5^n+9^n}{3.12^n+7^n}=\lim\limits\frac{6\left(\frac{5}{12}\right)^n+\left(\frac{9}{12}\right)^n}{3+\left(\frac{7}{12}\right)^n}=\frac{0+0}{3+0}=0\)

\(\lim\limits\frac{\sqrt{5}^n}{3^n+1}=\lim\limits\frac{\left(\frac{\sqrt{5}}{3}\right)^n}{1+\left(\frac{1}{3}\right)^n}=\frac{0}{1+0}=0\)

\(\lim\limits\frac{5.5^n-3.7^n}{3.10^n+36.6^n}=\lim\limits\frac{5.\left(\frac{5}{10}\right)^n-3\left(\frac{7}{10}\right)^n}{3+36\left(\frac{6}{10}\right)^n}=\frac{0-0}{3+0}=0\)

30 tháng 6 2017

Trần Thị Thùy Dung tham khảo đây nha:

Câu hỏi của Cute Baby so good - Toán lớp 6 - Học toán với OnlineMath

............

Trần Thị Thùy Dung
5 tháng 8 2023

\(S=\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\)

\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(S=1-\dfrac{1}{n+1}=\dfrac{n}{n+1}\)

\(T=\dfrac{3}{1x2}+\dfrac{3}{2x3}+\dfrac{3}{3x4}+\dfrac{3}{4x5}+...\dfrac{3}{nx\left(n+1\right)}\)

\(T=3x\left[\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\right]\)

\(T=3x\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\right]\)

\(T=3x\left(1-\dfrac{1}{n+1}\right)=\dfrac{3xn}{n+1}\)