b) Chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 và chia 9 dư 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên đó là x
* là dấu nhân.
Gọi a là thương số của: x chia 15 (dư 6),
theo đề ta có:
(15 * a)+6 = x
Gọi b là thương số của: x chia 9 (dư 1),
theo đề ta có:
(9 * b)+1 = x
Suy ra,
15a+6 = 9b+1
15a -9b = -5
a < b
a = 1, b = 2 <=> -3 ≄ -5 loại
a = 2, b = 4 <=> -6 ≄ -5 loại
a = 3, b = 6 <=> -9 ≄ -5 loại
a = 4, b = 7 <=> -3 ≄ -5 loại
a = 5, b = 9 <=> -6 ≄ -5 loại
Suy ra, không có số tự nhiên nào thỏa mãn điều kiện trên.
Gọi số tự nhiên đó là x
Gọi a là thương số của: x chia 15 (dư 6),
theo đề ta có:
(15 . a)+6 = x
Gọi b là thương số của: x chia 9 (dư 1),
theo đề ta có:
(9 . b)+1 = x
Suy ra,
15a+6 = 9b+1
15a -9b = -5
a < b
a = 1, b = 2 <=> -3 khác -5 loại
a = 2, b = 4 <=> -6 khác -5 loại
a = 3, b = 6 <=> -9 khác -5 loại
a = 4, b = 7 <=> -3 khác -5 loại
a = 5, b = 9 <=> -6 khác -5 loại
=> không có số tự nhiên nào thỏa mãn điều kiện trên.
tại sao 15a+6=9a+1
15a-9b=-5?????????????????????????
Gọi số chia là a
a = 15m + 6 = { m ∈ n }
a = 9m + 1 = { m ∈ n }
Vậy 15m ⋮ 3 ; 6 ⋮ 3
=> 15m + 6 ⋮ 3
Thì 9m ⋮ 3 ; 1 không chia hết cho 3
=> 9m + 1 không chia hết cho 3
Ta thấy 15m + 3 # 9m + 1
Vậy không tồn tại số cần tìm.
Số chia 15 dư 6 luôn chia hết cho 3
Số chia 9 dư 1 thì không chia hết cho 3
Vậy không có số nào thỏa cả hai điều kiện trên
Số chia 15 dư 6 luôn chia hết cho 3
Số chia 9 dư 1 thì không chia hết cho 3
Vậy không có số nào thỏa cả hai điều kiện trên
Gọi số tự nhiên đó là x
Gọi a là thương số của: x chia 15 (dư 6),
theo đề ta có:
(15 . a)+6 = x
Gọi b là thương số của: x chia 9 (dư 1),
theo đề ta có:
(9 . b)+1 = x
Suy ra,
15a+6 = 9b+1
15a -9b = -5
a < b
a = 1, b = 2 <=> -3 khác -5 ( loại )
a = 2, b = 4 <=> -6 khác -5 (loại )
a = 3, b = 6 <=> -9 khác -5 ( loại )
a = 4, b = 7 <=> -3 khác -5 ( loại )
a = 5, b = 9 <=> -6 khác -5 ( loại )
=> không có số tự nhiên nào TMĐK trên.
Hok tốt
Gọi số tự nhiên đó là x
Gọi a là thương số của: x chia 15 (dư 6),
theo đề ta có:
(15 * a)+6 = x
Gọi b là thương số của: x chia 9 (dư 1),
theo đề ta có:
(9 * b)+1 = x
Suy ra,
15a+6 = 9b+1
15a -9b = -5
a < b
a = 1, b = 2 <=> -3 ≄ -5 loại
a = 2, b = 4 <=> -6 ≄ -5 loại
a = 3, b = 6 <=> -9 ≄ -5 loại
a = 4, b = 7 <=> -3 ≄ -5 loại
a = 5, b = 9 <=> -6 ≄ -5 loại
(ko cần tk âu tại mik lấy trên mạng chứ ko pải mik tự làm nhưng mik rất vui khi giúp đc b)
Gọi số tự nhiên đó là x
Gọi a là thương số của: x chia 15 (dư 6),
theo đề ta có:
(15 x a)+6 = x
Gọi b là thương số của: x chia 9 (dư 1),
theo đề ta có:
(9 x b)+1 = x
Suy ra,
15a+6 = 9b+1
15a -9b = -5
a < b
a = 1, b = 2 <=> -3 ≄ -5 loại
a = 2, b = 4 <=> -6 ≄ -5 loại
a = 3, b = 6 <=> -9 ≄ -5 loại
a = 4, b = 7 <=> -3 ≄ -5 loại
a = 5, b = 9 <=> -6 ≄ -5 loại
Suy ra, không có số tự nhiên nào thỏa mãn điều kiện trên.
Tk mk nha
Gọi số tự nhiên đó là x
* là dấu nhân.
Gọi a là thương số của: x chia 15 (dư 6),
theo đề ta có:
(15 * a)+6 = x
Gọi b là thương số của: x chia 9 (dư 1),
theo đề ta có:
(9 * b)+1 = x
Suy ra,
15a+6 = 9b+1
15a -9b = -5
a < b
a = 1, b = 2 <=> -3 ≄ -5 loại
a = 2, b = 4 <=> -6 ≄ -5 loại
a = 3, b = 6 <=> -9 ≄ -5 loại
a = 4, b = 7 <=> -3 ≄ -5 loại
a = 5, b = 9 <=> -6 ≄ -5 loại
Suy ra, không có số tự nhiên nào thỏa mãn điều kiện trên.
Gọi thương của phép chia 15 là k ( k thuộc N )
thương của phép chia 9 là m ( m thuộc N )
tổng của hai số này là A
Ta có :
15k + 6 = 3( 5k + 2 ) = A Đến đây ta suy ra a chia hết cho 3
9m + 1 = 3(3m) +1 = A Vì 3(3m) chia hết cho 3 nên khi công thêm 1 thì 9m + 1 không chia hết cho 3 hay a không chia hết cho 3
Vậy suy ra không có số tự nhiên nào chia cho 15 dư 6 còn chia cho 9 thì dư 1
Nếu chia 15 dư 6 thì chắc chắn sẽ chia hết cho 3
Nếu chia 9 dư 1 thì chắc chắn sẽ không bao giờ chia hết cho 3
Do đó, hai điều này đối nghịch nhau
Từ đó suy ra, không có số tự nhiên nào chia 15 dư 6 và chia 9 dư 1
Giả sử tồn tại một số a chia cho 15 dư 6 và chia 9 dư 1 khi đó ta có:
\(\left\{{}\begin{matrix}a=15k+6\left(k\in N\right)\\15k+6-1⋮9\end{matrix}\right.\) ⇒ 15k + 6 - 1 ⋮ 3 ⇒ 15k + 5 ⋮ 3 ⇒ 3.(5k + 1) + 2 ⋮ 3
⇒ 2 ⋮ 3 (vô lí) Điều giả sử là sai.
Vậy không có số tự nhiên nào mà chia cho 15 dư 6 và chia 9 dư 1