Tìm số B ( b = A + 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình chỉ làm dc câu a thôi
Ta có \(ab=\frac{a}{b}\Rightarrow ab^2=a\)
Ta có \(a+b=ab\Rightarrow ab^2+b-ab=0\Rightarrow b\left(ab+1-a\right)=0\)
\(\Rightarrow ab+1-a=0\left(b\ne0\right)\Rightarrow ab+1=a\)
Ta có \(a+b=ab\Rightarrow ab+1+b=ab\Rightarrow b+1=0\Rightarrow b=-1\)
Ta lại có \(ab+1=a\Rightarrow1-a=a\Rightarrow a=\frac{1}{2}\)
vậy b=-1;a=1/2
không nhớ lắm nhưng hình như là bạn nhân 2 , 3 , 4 ,..., 100
để tìm ra
mik ko nhớ nha sr
a) Ta có: \(a+b=54\Rightarrow a=54-b\)
Thay vào \(a+c=45\) \(\Rightarrow54-b+c=45\)
Lại có: \(b+c=63\Rightarrow c=63-b\)
Thay vào \(54-b+c=45\Rightarrow54-b+63-b=45\)
Tìm được b:
\(\Rightarrow117-2\times b=45\)
\(\Rightarrow2\times b=117-45\)
\(\Rightarrow2\times b=72\)
\(\Rightarrow b=72:2=36\)
Sau khi tìm được b ta thay \(b=36\) vào \(a+b=54\)
Ta tìm được a:
\(a+36=54\)
\(\Rightarrow a=54-36\)
\(\Rightarrow a=18\)
Sau khi tìm được a ta thay \(a=18\) vào \(a+c=45\)
Ta tìm được c:
\(\Rightarrow18+c=45\)
\(\Rightarrow c=45-18\)
\(\Rightarrow c=27\)
Vậy 3 số a,b,c là \(18,36,27\)
a) Ta có hệ thống phương trình:
a + b = 54
b + c = 63
a + c = 45
The first method of the first method has been:
2a + b + c = 117
Trừ phương thức thứ ba ra khỏi phương thức trên ta được:
2a + b + c - (a + c) = 117 - 45
a + b = 72
Thay a + b = 72 vào phương trình đầu tiên ta được:
72 = 54
một = 18
Thay a = 18 vào phương trình a + b = 54 ta được:
18 + b = 54
b = 36
Thay a = 18 và b = 36 vào phương trình b + c = 63 ta được:
36 + c = 63
c = 27
Do đó a = 18, b = 36, c = 27.
b) Call number to find is xy, ta has:
10x + y + 20 + xy = 292
Rút gọn phương trình, ta được:
10x + y + xy = 272
Vì số có hai chữ số nên x ≠ 0. Ta có thể thử các giá trị khác nhau của x và y để tìm nghiệm. Bằng cách thử và sai, chúng tôi thấy rằng x = 8 và y = 4 thỏa mãn phương trình:
10(8) + 4 + 8(4) = 80 + 4 + 32 = 116
Vậy số đó là 84.
c) Call number to find is xy, ta has:
10x + y + 5 = xy + 428
Rút gọn phương trình, ta được:
10x + y - xy = 423
Vì số có hai chữ số nên x ≠ 0. Ta có thể thử các giá trị khác nhau của x và y để tìm nghiệm. Bằng cách thử và sai, chúng tôi thấy rằng x = 7 và y = 9 thỏa mãn phương trình:
10(7) + 9 - 7(9) = 70 + 9 - 63 = 16
Vậy số đó là 79.
d) Call hai số cần tìm là x và y, ta có:
(x + y)/2 = 45
y = 2x
Thay phương trình thứ hai vào phương trình thứ nhất, ta được:
(x + 2x)/2 = 45
3x/2 = 45
3x = 90
x = 30
Thay x = 30 vào phương trình thứ hai, ta được:
y = 2(30)
y = 60
Vậy hai số là 30 và 60.
a, Giả sử tồn tại a,b thỏa mãn đề bài
Ta có: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
\(\Rightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)
\(\Rightarrow\frac{-\left(a-b\right)}{ab}=\frac{1}{a-b}\)
\(\Rightarrow-\left(a-b\right)^2=ab\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\Rightarrow-\left(a-b\right)^2\le0\forall a,b\)
Mà a,b là số nguyên dương => ab > 0
=> Mâu thuẫn
=> Giả sử sai
Vậy không tồn tại a,b thỏa mãn đề
b, https://olm.vn/hoi-dap/question/1231.html
a: =>4n+4-2 chia hết cho n+1
=>\(n+1\in\left\{1;-1;2;-2\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
b: \(\Leftrightarrow\left(a+2;b-1\right)\in\left\{\left(1;9\right);\left(9;1\right);\left(-1;-9\right);\left(-9;-1\right);\left(3;3\right);\left(-3;-3\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(-1;10\right);\left(7;2\right);\left(-3;-8\right);\left(-11;0\right);\left(1;4\right);\left(-5;-2\right)\right\}\)
B và b; A có mối quan hệ thế nào em nhỉ?
chắc có thể là như này:
B = A+1
Nếu A = 1
B = 1+1 =2
Nếu A = 2
B= 2+1=3
Nếu A = 3
B = 3+1= 4
...
Nếu A = n
B= n+1
~hok tốt~