Giải hệ phương trình:
(x-1)(2y+1) = (x-3)(y-5) + xy
(x+1)(y+1) = (2x-1)(y+1) - xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: y − 2 x + 1 ≥ 0 , 4 x + y + 5 ≥ 0 , x + 2 y − 2 ≥ 0 , x ≤ 1
T H 1 : y − 2 x + 1 = 0 3 − 3 x = 0 ⇔ x = 1 y = 1 ⇒ 0 = 0 − 1 = 10 − 1 ( k o t / m ) T H 2 : x ≠ 1 , y ≠ 1
Đưa pt thứ nhất về dạng tích ta được
( x + y − 2 ) ( 2 x − y − 1 ) = x + y − 2 y − 2 x + 1 + 3 − 3 x ( x + y − 2 ) 1 y − 2 x + 1 + 3 − 3 x + y − 2 x + 1 = 0 ⇒ 1 y − 2 x + 1 + 3 − 3 x + y − 2 x + 1 > 0 ⇒ x + y − 2 = 0
Thay y= 2-x vào pt thứ 2 ta được x 2 + x − 3 = 3 x + 7 − 2 − x
⇔ x 2 + x − 2 = 3 x + 7 − 1 + 2 − 2 − x ⇔ ( x + 2 ) ( x − 1 ) = 3 x + 6 3 x + 7 + 1 + 2 + x 2 + 2 − x ⇔ ( x + 2 ) 3 3 x + 7 + 1 + 1 2 + 2 − x + 1 − x = 0
Do x ≤ 1 ⇒ 3 3 x + 7 + 1 + 1 2 + 2 − x + 1 − x > 0
Vậy x + 2 = 0 ⇔ x = − 2 ⇒ y = 4 (t/m)
Xét phương trình (1) ta có
\(2x^2-y^2+xy-5x+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)
\(\Leftrightarrow\left(x+y\right)\left(2x-y\right)-\left(x+y\right)-2\left(2x-y\right)+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)
\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\sqrt{y-2x+1}-\sqrt{3-3x}\)
Đặt \(\hept{\begin{cases}\sqrt{y-2x+1}=a\left(a\ge0\right)\\\sqrt{3-3x}=b\left(b\ge0\right)\end{cases}\Rightarrow a^2-b^2=x+y-2}\)thì ta có
\(PT\Leftrightarrow-a^2\left(a^2-b^2\right)=a-b\)
\(\Leftrightarrow\left(b-a\right)\left(a^3+a^2b+1\right)=0\)
Ta thấy là \(\left(a^3+a^2b+1\right)>0\)
\(\Rightarrow a=b\)
\(\Leftrightarrow y-2x+1=3-3x\)
\(\Leftrightarrow y=2-x\)
Thế vào pt (2) ta được
\(x^2-2+x-1=\sqrt{4x+2-x+5}-\sqrt{x+4-2x-2}\)
\(\Leftrightarrow x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)
Giải tiếp sẽ có được nghiệm \(\hept{\begin{cases}x=-2\\y=4\end{cases}}\)
phương trình (1) tách như sau:
(x+y)(2x−y)−(x+y)−2(2x−y)+2=√y−2x+1−√3−3x⇔(x+y−2)(2x−y−1)=√y−2x+1−√3−3x↔{√y−2x+1=a(a≥0)√3−3x=b(b≥0)⇒a2−b2=x+y−2;−a2=2x−y−1⇒(a2−b2)(−a2)=a−b⇔(a−b)(−a3−a2b−1)=0⇔a=b(−a3−a2b−1<0;a≥0;b≥0)→a=b⇔y−2x+1=3−3x⇔y=2−x(x+y)(2x−y)−(x+y)−2(2x−y)+2=y−2x+1−3−3x⇔(x+y−2)(2x−y−1)=y−2x+1−3−3x↔{y−2x+1=a(a≥0)3−3x=b(b≥0)⇒a2−b2=x+y−2;−a2=2x−y−1⇒(a2−b2)(−a2)=a−b⇔(a−b)(−a3−a2b−1)=0⇔a=b(−a3−a2b−1<0;a≥0;b≥0)→a=b⇔y−2x+1=3−3x⇔y=2−x
thế vaò (2) là ok
k cho mình nhé xin các bạn đó cho mình 1 cái có hại gì đến các bạn đâu
ĐKXĐ: ....
PT (1)\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2+x+y+2\right)=0\)
Dễ thấy cái ngoặc to >0. Do đó x = y.
Thay vào PT (2) \(\Leftrightarrow\sqrt{5-x}+\sqrt{x}+\sqrt{3x-1}=x^2+3x+1\)
Đến đây chắc là có đk: \(\frac{1}{3}\le x\le5\). Nghiệm xấu, anh tự giải nốt:D
Hpt cho tương đương:
\(\hept{\begin{cases}xy-x-y+1=6\\\frac{1}{\left(x^2-2x+1\right)-1}+\frac{1}{\left(y^2-2y+1\right)-1}=\frac{2}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(y-1\right)=6\\\frac{1}{\left(x-1\right)^2-1}+\frac{1}{\left(y-1\right)^2-1}=\frac{2}{3}\end{cases}}}\)
Đặt \(x-1=a,y-1=b\)(dễ thấy a,b khác 0). Khi đó hệ trở thành:
\(\hept{\begin{cases}ab=6\\\frac{1}{a^2-1}+\frac{1}{b^2-1}=\frac{2}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}b=\frac{6}{a}\\\frac{1}{a^2-1}+\frac{1}{\frac{36}{a^2}-1}=\frac{2}{3}\left(1\right)\end{cases}}}\)
Giải (1) \(\Leftrightarrow\frac{1}{a^2-1}+\frac{a^2}{36-a^2}=\frac{2}{3}\Leftrightarrow\frac{3\left(36-a^2\right)+3a^2\left(a^2-1\right)}{3\left(a^2-1\right)\left(36-a^2\right)}=\frac{2\left(a^2-1\right)\left(36-a^2\right)}{3\left(a^2-1\right)\left(36-a^2\right)}\)
\(\Rightarrow108-3a^2+3a^4-3a^2=74a^2-2a^4-72\)
\(\Leftrightarrow a^4-16a^2+36=0\Leftrightarrow\left(a^2-8\right)^2=28\Leftrightarrow\orbr{\begin{cases}a^2=8+2\sqrt{7}\\a^2=8-2\sqrt{7}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=\sqrt{8+2\sqrt{7}}\\a=\sqrt{8-2\sqrt{7}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=1+\sqrt{7}\\a=1-\sqrt{7}\end{cases}}\)
Suy ra: \(\hept{\begin{cases}a=1+\sqrt{7}\\b=\frac{6}{a}\end{cases}}\) hoặc \(\hept{\begin{cases}a=1-\sqrt{7}\\b=\frac{6}{a}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1+\sqrt{7}\\b=\sqrt{7}-1\end{cases}}\) hoặc \(\hept{\begin{cases}a=1-\sqrt{7}\\b=-1-\sqrt{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2+\sqrt{7}\\y=\sqrt{7}\end{cases}}\) hoặc \(\hept{\begin{cases}x=2-\sqrt{7}\\y=-\sqrt{7}\end{cases}}\). Kết luận:...
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)
\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)
\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)
\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)
\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)
Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
\(\left\{{}\begin{matrix}\left(x-1\right)\left(2y+1\right)=\left(x-3\right)\left(y-5\right)+xy\\\left(x+1\right)\left(y+1\right)=\left(2x-1\right)\left(y+1\right)-xy\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2xy+x-2y-1=xy-5x-3y+15+xy\\xy+x+y+1=2xy+2x-y-1-xy\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2y-1=-5x-3y+15\\x+y+1=2x-y-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6x+y=16\\-x+2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x+2y=32\\-x+2y=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}13x=34\\6x+y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{34}{13}\\y=16-6x=16-6\cdot\dfrac{34}{13}=\dfrac{4}{13}\end{matrix}\right.\)