K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(S_{q\left(OAC\right)}=\dfrac{pi\cdot R^2\cdot90}{360}=pi\cdot\dfrac{R^2}{4}\)

\(S_{OAC}=\dfrac{1}{2}\cdot OA\cdot OC=\dfrac{1}{2}\cdot R^2\)

=>\(S_{vp}=pi\cdot\dfrac{R^2}{4}-\dfrac{1}{2}\cdot R^2\)

b: SỬa đề: AM cắt OC tại I

góc AMB=1/2*180=90 độ

góc IOB+gócIMB=180 độ

=>IOBM nội tiếp

 

5 tháng 6 2021

a.tứ giác AMDO nội tiếp (∠AOD+∠AMD=180)

⇒BD.BM=BO.BA

mà A,B,O cố định nên BO.BA không đổi

⇒BD.BM không có giá trị phụ thuộc  vào vị trí điểm m

b.có ∠EMB=\(\dfrac{1}{2}\stackrel\frown{MB}\) (góc tạo bởi tia tiếp tuyến và dây cung)

do tứ giác AMDO nội tiếp⇒∠MAO=∠MDE(1)

∠MAO=\(\dfrac{1}{2}\stackrel\frown{MB}\)

⇒∠EMB=∠MAO(2)

từ (1) và (2) ⇒∠EMB=∠MDE

⇒ΔEMD cân tại E

⇒ED=EM

a: C là điểm chính giữa của cung AB

=>OC vuông góc AB

góc OHE=góc OME=90 độ

=>OHME nội tiếp

b: góc AMB=1/2*sđ cung AB=90 độ

=>góc AMH+góc AOH=180 độ

=>OHMA nội tiếp

=>O,H,M,E,A cùng thuộc 1 đường tròn

=>góc EAO=90 độ

OHEA có 3 góc vuông

=>OHEA là hcn

=>EH=OA=R

a: góc AMB=góc ACB=90 độ

=>BM vuông góc DA và AC vuông góc DB

góc DMH+góc DCH=90+90=180 độ

=>DMHC nội tiếp

Xét ΔHMA vuông tại M và ΔHCB vuông tại C có

góc MHA=góc CHB

=>ΔHMA đồng dạng với ΔHCB

=>HM/HC=HA/HB

=>HM*HB=HA*HC

b: góc DBM=góc CBM=1/2*sđ cung CM

góc MBA=1/2*sđ cung MA

mà sđ cung CM=sđ cung MA

nên góc DBM=góc ABM

=>BM là phân giác của góc DBA

Xét ΔBDA có

BM vừa là đường cao, vừa là phân giác

=>ΔBDA cân tại B

d: Xét ΔMAK vuông tại M và ΔMDH vuông tại M có

MA=MD

góc MAK=góc MDH

=>ΔMAK=ΔMDH

=>MK=MH

Xét tứ giác AKDH có

M là trung điểm chung của AD và KH

AD vuông góc KH

=>AKDH là hình thoi

29 tháng 3 2016

a) Góc EBH = góc HBA ( góc nội tiếp chắn hai cung bằng nhau) 

BH vuông góc EA ( góc AHB =90 nội tiếp chắn nửa đường tròn ) 

=> Có đpcm 

b) KH.KB= KE ^2 ( dùng htl tỏng tam giác BAK )