3.Tìm x:
a.x+3.x+5.x+...+2007.x=\(x^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>x=1135:37=1135/37
b: =>3x=165
hay x=55
c: =>x-8=92
hay x=100
\(a,x=1135:37=30\left(dư.27\right)\\ b,x\times3=40755:247=165\\ x=165:3=55\\ c,x-8=57316:623=92\\ x=92+8=100\)
a: \(\Leftrightarrow x\cdot12.71=1.269\)
hay x=1269/12710
a: \(\Leftrightarrow x\cdot12.71=1.269\)
hay x=1269/12710
a) \(A=x^{15}+3x^{14}+5\)
\(=x^{14}\left(x+3\right)+5\)
\(=x^{14}.0+5\)
= 5
b) x = -3 => x + 3 = 0
\(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(=\left(x^{2006}.0+1\right)^{2007}\)
\(=1^{2007}=1\)
\(A=x^{15}+3.x^{14}+5\text{ biết x+3=0}\)
\(A=x^{14}.\left(x+3\right)+5\)
\(\text{Do x+3=0}\Rightarrow A=x^{14}.0+5\)
\(A=0+5\)
\(A=5\) \(\text{Vậy }A=5\text{ với x+3=0}\)
\(B=\left(x^{2007}+3.x^{2006}+1\right)^{2007}\text{ biết x=-3}\)
\(B=\left[x^{2006}.\left(x+3\right)+1\right]^{2007}\)
\(\text{Do x=-3}\Rightarrow B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=\left(x^{2006}.0+1\right)^{2007}\)
\(B=\left(0+1\right)^{2007}\)
\(B=1^{2007}\)
\(B=1\) \(\text{Vậy }B=1\text{ với x=-3}\)
\(A=x^6-2007x^5+2007x^4-2007x^3+2007x^2-2007x+2007\)
\(=x^6-2006x^5-x^5+2006x^4+x^4-2006x^3-x^3+2006x^2+x^2-2006x-x+2006+1\)
\(=x^5\left(x-2006\right)-x^4\left(x-2006\right)+x^3\left(x-2006\right)-x^2\left(x-2006\right)+x\left(x-2006\right)-\left(x-2006\right)+1\)
\(=\left(x^5-x^4+x^3-x^2+x-1\right)\left(x-2006\right)+1\)
Thay x = 2006
\(\Leftrightarrow A=1\)
Vậy A = 1 tại x = 2006
\(A=x^6-2007.x^5+2007.x^4-2007.x^3+2007.x^2-2007.x+2007\)
\(=x^6-\left(x+1\right).x^5+\left(x+1\right).x^4-...+x+1\)
\(=x^6-x^6-x^5+x^5+x^4-x^4-...-x+1\)
\(=1\)
\(1.x+3.x+5.x+...+2007.x=x^2\)
\(\Rightarrow x.\left(1+3+5+...+2007\right)=x^2\)
\(\Rightarrow x.\frac{\left[\left(2007-1\right):2+1\right].\left(2007+1\right)}{2}=x^2\)
\(\Rightarrow x.1008016=x^2\)
\(\Rightarrow x=1008016\)
ta có x = 3.5.7.9.11...2007