Chóp S.ABCD có I,J,K nằm trong tam giác SAB, SBC, SAD. Tìm thiết diện của mặt phẳng (IJK) và chóp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi H là trung điểm của AB .
Lại có: S A B ⊥ A B C D ⇒ S H ⊥ A B C D .
Do A D / / B C nên giao tuyến d của (SAD) và (SBC) đi qua S và song song với AD.
Do A D ⊥ A B A D ⊥ S H ⇒ A D ⊥ S A B ⇒ d ⊥ S A B .Suy ra góc giữa hai mặt phẳng (SAD) và (SBC) bằng 180 ∘ − AS B ⏜ = 60 ∘ .
Rất rõ ràng là câu A nhé bạn, vì \(O\in AC\subset\left(SAC\right)\)
a. \(\left(SAB\right)\cap\left(SBC\right)=?\)
Ta có: \(\left\{{}\begin{matrix}S\in\left(SAB\right),\left(SBC\right)\\B\in\left(SAB\right),\left(SBC\right)\end{matrix}\right.\)\(\Rightarrow\)\(\left(SAB\right)\cap\left(SBC\right)=SB\)
b. \(\left(SAB\right)\cap\left(SCD\right)=?\)
Xét mp (SAB), kẻ Sx//AB
Ta có: Sx//AB, AB//CD \(\Rightarrow\) CD//Sx
Lại có: \(S\in\left(SAB\right),\left(SCD\right)\)
\(\Rightarrow\)\(\left(SAB\right)\cap\left(SCD\right)=Sx\)
c. \(\left(SAD\right)\cap\left(SBC\right)=?\)
Xét mp (ABCD), ta có không song song với BC
Gọi \(I=AD\cap BC\)
Ta có: \(\left\{{}\begin{matrix}S\in\left(SAD\right),\left(SBC\right)\\I\in\left(SAD\right),\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\)\(\left(SAD\right)\cap\left(SBC\right)=SI\)