Cho hình thang ABCD, độ dài đáy AB nhỏ hơn đáy CD là 4cm; chiều cao hình thang 6cm; diện tích hình thang ABCD là 48cm2.
a. Tính độ dài mỗi đáy của hình thang
b. Đường chéo AC và BD cắt nhau tại O. So sánh diện tích tam giác AOD và diện tích tam giác BOC.
c. Tính diện tích tam giác AOB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB=CD-6=16-6=10(cm)
\(AD=\dfrac{AB}{2}=5\left(cm\right)\)
Vì ABCD là hình thang cân
nên \(AD=BC=5\left(cm\right)\)
Chu vi hình thang cân ABCD là:
\(AB+AD+CD+BC=5+5+10+16=36\left(cm\right)\)
Diện tích hình thang cân ABCD là:
\(S_{ABCD}=\dfrac{1}{2}\cdot AH\cdot\left(AB+CD\right)\)
\(=\dfrac{1}{2}\cdot4\cdot\left(10+16\right)=2\cdot26=52\left(cm^2\right)\)
Cạnh AB dài:
16 - 6 = 10 (cm)
Cạnh AD dài:
10 : 2 = 5 (cm)
Chu vi hình thang cân ABCD:
16 + 10 + 5 + 5 = 36 (cm)
Diện tích hình thang:
(16 + 10) × 4 : 2 = 52 (cm²)
Độ dài đáy CD là: 4 x 2 = 8 cm
Diện tích hình thang cân ABCD là: (4+8)x3:2 = 18 cm2
Độ dài đáy CD là: 4 x 2 = 8 cm Diện tích hình thang cân ABCD là: (4+8)x3:2 = 18 cm2
Đáp án cần chọn là: B
Ta có tam giác ADH vuông cân tại H vì D ^ = 450.
Do đó DH = AH = 6cm
Mà DH = 1 2 (CD – AB)
Suy ra CD = 2DH + AB = 12 + 4 = 16 (cm)
Vậy CD = 16 cm.
Bài làm:
Tổng độ dài hai đáy là
10.2=20(cm)
Độ dài đáy AB là
20-12=8(cm)
Chiều cao của hình thang là
8-3=5(cm)
Diện tích hình thang cân ABCD là
(12+8).5:2 =50(cm2)
Dấu . là nhân nha!!
cm2 là cm vuông!!
độ dài đáy AB là :
10:2=5(cm)
diện tích hình thang cân là :
(10+5).4:2=30(cm2)
đ/s:30 cm2
Cho hình thang cân ABCD có độ dài đáy AB=25cm,đáy CD ngắn hơn đáy AB 5 cm,độ dài cạnh AD bằng 1 nửa độ dài đáy của CD .Chu vi hình thang ABCD .
Lời giải:
a. Tổng độ dài hai đáy:
$48\times 2:6=16$ (cm)
Độ dài đáy nhỏ: $(16-4):2=6$ (cm)
Độ dài đáy lớn: $6+4=10$ (cm)
b.
$S_{ABD}=AB\times h:2=6\times 6:2=18$ (cm2)
$S_{ABC}=AB\times h:2 = 6\times 6:2=18$ (cm2)
$\Rightarrow S_{ABD}=S_{ABC}$
$\Rightarrow S_{ABD}-S_{AOB}=S_{ABC}-S_{AOB}$
$\Rightarrow S_{AOD}=S_{BOC}$
d.
$\frac{S_{AOB}}{S_{AOD}}=\frac{OB}{OD}$
$\Rightarrow S_{AOB}=\frac{OB}{OD}\times S_{AOD}$
$\frac{S_{BOC}}{S_{DOC}}=\frac{OB}{OD}$
$\Rightarrow S_{BOC}=\frac{OB}{OD}\times S_{DOC}$
Suy ra:
$S_{AOB}+S_{BOC}=\frac{OB}{OD}\times (S_{AOD}+S_{DOC})$
$S_{ABC}=\frac{OB}{OD}\times S_{ADC}$
$6\times 6:2=\frac{OB}{OD}\times 10\times 6:2$
$18=\frac{OB}{OD}\times 30$
$\frac{OB}{OD}=\frac{18}{30}=\frac{3}{5}$
$\Rightarrow \frac{OB}{BD}=\frac{3}{8}$
$\frac{S_{AOB}}{S_{ABD}}=\frac{OB}{BD}=\frac{3}{8}$
$\Rightarrow S_{AOB}=\frac{3}{8}\times S_{ABD}=\frac{3}{8}\times 18=6,75$ (cm2)
Hình vẽ: