K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 5 2021

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+y^2+y=8\\\left(x^2+x\right)\left(y^2+y\right)=12\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+x=u\\y^2+y=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u+v=8\\uv=12\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(6;2\right);\left(2;6\right)\)

TH1: \(\left\{{}\begin{matrix}x^2+x=6\\y^2+y=2\end{matrix}\right.\) \(\Rightarrow...\)

TH2: ... tương tự

18 tháng 5 2021

cảm ơn thầy ạ 3>

NV
26 tháng 7 2020

c/

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+y^2+y=8\\\left(x^2+x\right)\left(y^2+y\right)=12\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+x=a\\y^2+y=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\ab=12\end{matrix}\right.\) theo Viet đảo, a và b là nghiệm:

\(t^2-8t+12=0\Rightarrow\left[{}\begin{matrix}t=6\\t=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=2\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x-6=0\\y^2+y-2=0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x-2=0\\y^2+y-6=0\end{matrix}\right.\end{matrix}\right.\)

Bạn tự bấm máy

NV
26 tháng 7 2020

b/

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy+1=0\\\left(x+y\right)^2-2xy-x-y=22\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+2xy+2=0\\\left(x+y\right)^2-2xy-x-y-22=0\end{matrix}\right.\)

\(\Rightarrow\left(x+y\right)^2+\left(x+y\right)-20=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=4\Rightarrow xy=-5\\x+y=-5\Rightarrow xy=4\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=-5\end{matrix}\right.\) thì x; y là nghiệm:

\(t^2-4t-5=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=5\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(-1;5\right);\left(5;-1\right)\)

TH2: \(\left\{{}\begin{matrix}x+y=-5\\xy=4\end{matrix}\right.\) thì x; y là nghiệm:

\(t^2+5t+4=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-4\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(-1;-4\right);\left(-4;-1\right)\)

18 tháng 8 2021

các bn ơi giúp mình với

 

NV
18 tháng 4 2021

\(\Leftrightarrow\left\{{}\begin{matrix}xy+6x-3y-18=xy\\xy-2x+2y-4=xy\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-3y=18\\-2x+2y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=6\\-x+y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)

NV
12 tháng 12 2020

Cộng vế với vế:

\(x^2+2xy+y^2+x+y=12\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=-4\\x+y=3\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=-4\\xy=5-\left(x+y\right)=9\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm: \(t^2-4t+9=0\) (vô nghiệm)

TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=5-\left(x+y\right)=2\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm:

\(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)

NV
8 tháng 4 2021

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=y\left(x-2\right)x\left(y-4\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=\left(x^2-2x\right)\left(y^2-4y\right)\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2-2x=u\\y^2-4y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2u-v=1\\u^2+2=uv\end{matrix}\right.\) \(\Rightarrow u^2+2=u\left(2u-1\right)\)

\(\Leftrightarrow u^2-u-2=0\Leftrightarrow...\)

31 tháng 12 2023

a) x + y = 6 (1)

2x - 3y = 12 (2)

(1) ⇔ x = 6 - y (3)

Thế (3) vào (2) ta có:

2(6 - y) - 3y = 12

⇔ 12 - 2y - 3y = 12

⇔ -5y = 12 - 12

⇔ -5y = 0

⇔ y = 0

Thế y = 0 vào (3) ta có:

x = 6 - 0

⇔ x = 6

Vậy S = {6; 0}

b) x - y = 5  (4)

(x - 2)(y + 3) = 3 + xy (5)

(5) ⇔ xy + 3x - 2y - 6 = 3 + xy

⇔ 3x - 2y = 3 + 6

⇔ 3x - 2y = 9 (6)

(4) ⇔ x = y + 5 (7)

Thế x = y + 5 vào (6) ta có:

(6) ⇔ 3(y + 5) - 2y = 9

⇔ 3y + 15 - 2y = 9

⇔ y = 9 - 15

⇔ y = -6

Thế y = -6 vào (7) ta có:

x = -6 + 5

⇔ x = -1

Vậy S ={-1; -6}

14 tháng 11 2017

Đặt S=x+y;P=xy giải ra :V

NV
12 tháng 1 2021

Biến đổi pt dưới:

\(x^2-4x+4+y\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+y\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2+y\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2-y\end{matrix}\right.\)

Thay vào pt đầu giải bt

12 tháng 1 2021

thanks bạn nha