Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân vật chính trong chuyện "Hai kiểu áo" là: viên quan và thợ may.
Viên quan: luôn tìm cách xu nịnh luồn lách để thăng tiến nhưng lại có thái độ khinh thường, bắt nạt những người dân đen nghèo khổ.
Thợ may: người nhìn thấu bộ mặt thối nát của quan lại
a: \(\left(\overrightarrow{AB},\overrightarrow{AC}\right)=\widehat{BAC}=90^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=30^0\)
\(\left(\overrightarrow{CA};\overrightarrow{CB}\right)=\widehat{ACB}=30^0\)
Lấy M sao cho \(\overrightarrow{AB}=\overrightarrow{BM}\)
=>AB=BM và B nằm giữa A và M
=>B là trung điểm của AM
Ta có: \(\widehat{ABC}+\widehat{MBC}=180^0\)(hai góc kề bù)
=>\(\widehat{MBC}+60^0=180^0\)
=>\(\widehat{MBC}=120^0\)
\(\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\left(\overrightarrow{BM},\overrightarrow{BC}\right)=\widehat{MBC}=120^0\)
b: Vì ΔABC vuông tại A nên \(\overrightarrow{AB}\cdot\overrightarrow{AC}=0\)
Xét ΔABC vuông tại A có \(sinABC=\dfrac{AC}{BC}\)
=>\(\dfrac{4}{BC}=sin60=\dfrac{\sqrt{3}}{2}\)
=>\(BC=\dfrac{8\sqrt{3}}{3}\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB^2=BC^2-AC^2=\left(\dfrac{8}{\sqrt{3}}\right)^2-4^2=\dfrac{16}{3}\)
=>\(AB=\dfrac{4\sqrt{3}}{3}\)
MB=BA
mà \(AB=\dfrac{4\sqrt{3}}{3}\)
nên \(MB=\dfrac{4\sqrt{3}}{3}\)
\(\overrightarrow{AB}\cdot\overrightarrow{BC}=\overrightarrow{BM}\cdot\overrightarrow{BC}\)
\(=BM\cdot BC\cdot cos\left(\overrightarrow{BM},\overrightarrow{BC}\right)\)
\(=\dfrac{4\sqrt{3}}{3}\cdot\dfrac{8\sqrt{3}}{3}\cdot cos120=-\dfrac{16}{3}\)
c: \(\overrightarrow{AB}\left(\overrightarrow{BC}+\overrightarrow{BA}\right)\)
\(=\overrightarrow{AB}\cdot\overrightarrow{BC}+\overrightarrow{AB}\cdot\overrightarrow{BA}\)
\(=-\dfrac{16}{3}-AB^2=-\dfrac{16}{3}-\left(\dfrac{4}{\sqrt{3}}\right)^2=-\dfrac{32}{3}\)
a/
\(\left(104,5-14,1+9,6\right)xx=25\)
\(\Rightarrow100xx=25\Rightarrow x=\dfrac{25}{100}=\dfrac{1}{4}\)
b/
\(T=\dfrac{\left(2011-2\right)x2010+2000}{2011x2010-2020}=\)
\(=\dfrac{2011x2010-4020+2000}{2011x2010-2020}=\dfrac{2011x2010-2020}{2011x2010-2020}=1\)
\(\left(-\dfrac{7}{23}\right).\left(\dfrac{13}{28}\right)+\left(-\dfrac{7}{23}\right).\left(\dfrac{25}{28}\right)\)
\(=\left(-\dfrac{7}{23}\right).\left(\dfrac{13}{28}+\dfrac{25}{28}\right)\)
\(=\left(-\dfrac{7}{23}\right).\left(\dfrac{38}{28}\right)\)
\(=\left(-\dfrac{7}{23}\right).\left(\dfrac{19}{14}\right)\)
\(=-\dfrac{19}{46}\)
\(\left(-\dfrac{7}{23}\right)\cdot\left(\dfrac{13}{28}\right)+\left(-\dfrac{7}{13}\right)\cdot\left(\dfrac{25}{28}\right)\)
\(=\left(-\dfrac{7}{23}\right)\cdot\left(\dfrac{13}{28}+\dfrac{25}{28}\right)\)
\(=\left(-\dfrac{7}{13}\right)\cdot\dfrac{38}{28}\)
\(=\left(-\dfrac{7}{13}\right)\cdot\dfrac{19}{14}\)
\(=-\dfrac{19}{26}\)
a, Số học sinh toàn trường là : \(60:15\%=400\left(hs\right)\)
b, Số học sinh lớp 5 là : \(400\times22,5\%=90\left(hs\right)\)
Lời giải:
a.
Vì $MC, MD$ là tiếp tuyến của $(O)$ nên $MC\perp OC, MD\perp OD$
$\Rightarrow \widehat{MCO}=\widehat{MDO}=90^0$
Tứ giác $MCOD$ có tổng 2 góc đối nhau $\widehat{MCO}+\widehat{MDO}=90^0+90^0=180^0$ nên $MCOD$ là tứ giác nội tiếp.
$\Rightarrow M,C,O,D$ cùng thuộc 1 đường tròn (1)
Mặt khác:
$K$ là trung điểm $AB$ nên $OK\perp AB$.
$\Rightarrow \widehat{MKO}=90^0$
Tứ giác $MCKO$ có $\widehat{MCO}=\widehat{MKO}=90^0$ và cùng nhìn cạnh $MO$ nên $MCKO$ là tứ giác nội tiếp.
$\Rightarrow M,C,K,O$ cùng thuộc 1 đường tròn (2)
Từ $(1); (2)\Rightarrow M,C,K,O,D$ cùng thuộc 1 đường tròn.
$\Rightarrow MCKD$ là tứ giác nội tiếp.
b.
Xét tam giác $MCA$ và $MBC$ có:
$\widehat{M}$ chung
$\widehat{MCA}=\widehat{MBC}$ (góc tạo bởi tt và dây cung bằng góc nt chắn cung đó)
$\Rightarrow \triangle MCA\sim \triangle MBC$ (g.g)
$\Rightarrow \frac{MC}{MA}=\frac{MB}{MC}\Rightarrow MC^2=MA.MB(3)$
Mặt khác:
Xét tam giác $MCN$ và $MKC$ có:
$\widehat{M}$ chung
$\widehat{MCN}=\widehat{MCD}=\frac{1}{2}\text{sđc(CD)}=\frac{1}{2}\widehat{COD}=\widehat{COM}=\widehat{MKC}$ (do $MCKO$ là tgnt)
$\Rightarrow \triangle MCN\sim \triangle MKC$ (g.g)
$\Rightarrow \frac{MC}{MK}=\frac{MN}{MC}$
$\Rightarrow MC^2=MK.MN(4)$
Từ $(3); (4)\Rightarrow MA.MB=MK.MN$
Hình vẽ: