giải giúp mình câu b ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nãy ghi nhầm =="
a)Hđ gđ là nghiệm pt
`x^2=2x+2m+1`
`<=>x^2-2x-2m-1=0`
Thay `m=1` vào pt ta có:
`x^2-2x-2-1=0`
`<=>x^2-2x-3=0`
`a-b+c=0`
`=>x_1=-1,x_2=3`
`=>y_1=1,y_2=9`
`=>(-1,1),(3,9)`
Vậy tọa độ gđ (d) và (P) là `(-1,1)` và `(3,9)`
b)
Hđ gđ là nghiệm pt
`x^2=2x+2m+1`
`<=>x^2-2x-2m-1=0`
PT có 2 nghiệm pb
`<=>Delta'>0`
`<=>1+2m+1>0`
`<=>2m> -2`
`<=>m> 01`
Áp dụng hệ thức vi-ét:`x_1+x_2=2,x_1.x_2=-2m-1`
Theo `(P):y=x^2=>y_1=x_1^2,y_2=x_2^2`
`=>x_1^2+x_2^2=14`
`<=>(x_1+x_2)^2-2x_1.x_2=14`
`<=>4-2(-2m-1)=14`
`<=>4+2(2m+1)=14`
`<=>2(2m+1)=10`
`<=>2m+1=5`
`<=>2m=4`
`<=>m=2(tm)`
Vậy `m=2` thì ....
\(\dfrac{sin^3x+cos^3x}{sinx+cosx}=\dfrac{\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)}{sinx+cosx}\)
\(=sin^2x+cos^2x-sinx.cosx=1-sinx.cosx\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m+1\\x_1x_2=-2m-7\end{matrix}\right.\)
\(\left(x_1+2x_2\right)\left(x_2+2x_1\right)=3\)
\(\Leftrightarrow2x_1^2+2x_2^2+5x_1x_2=3\)
\(\Leftrightarrow2\left(x_1+x_2\right)^2+x_1x_2=3\)
\(\Leftrightarrow2\left(-2m+1\right)^2+\left(-2m-7\right)=3\)
\(\Leftrightarrow4m^2-5m-4=0\) \(\Rightarrow m=\dfrac{5\pm\sqrt{89}}{8}\)
Lời giải:
Vì $CF, BE$ là đường cao của tam giác $ABC$ nên:
$\widehat{AFH}=\widehat{AEH}=90^0$
Tứ giác $AEHF$ có tổng hai góc đối nhau $\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.
b)
Vì $AFHE$ nội tiếp nên $\widehat{F_2}=\widehat{H_2}=\widehat{H_1}$
$\widehat{F_1}=\widehat{A_1}=90^0-\widehat{C}=\widehat{B_1}$
Áp dụng công thức $S_{ABC}=\frac{1}{2}.AB.AC\sin A$ ta có:
$\frac{HM}{AM}=\frac{S_{FMH}}{S_{AFM}}=\frac{FH.\sin F_1}{FA.\sin F_2}=\frac{FH}{FA}.\frac{\sin B_1}{\sin H_1}$
$=\tan A_2.\sin B_1.\frac{1}{\sin H_1}$
$=\frac{BK}{AK}.\frac{HK}{BH}.\frac{BH}{BK}$
$=\frac{HK}{AK}$
$\Rightarrow HM.AK=HK.AM$
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: ΔBAD=ΔBED
nên BA=BE
=>ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔABE đều
Bạn xem lại đề. Kết quả ra $m$ khá xấu, không phù hợp với bài toán PT bậc 2 cơ bản.