K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

ta có: n + 1 là ước của 4n2 + 4n + 7

=> 4n2 + 4n + 7 chia hết cho n + 1 

4n.(n+1) + 7 chia hết cho n + 1 

mà 4n.(n+1) chia hết cho n + 1 

=> 7 chia hết cho n + 1 

...

bn tự làm tiếp nhé

NM
8 tháng 11 2021

a. ta có : \(4n+7=4\left(n+1\right)+3\text{ chia hết hco }n+1\)

khi 3 chia hết cho n+1 hay \(\orbr{\begin{cases}n+1=1\\n+1=3\end{cases}\Leftrightarrow\orbr{\begin{cases}n=0\\n=2\end{cases}}}\)

b. ta có : \(5n+13=5\left(n+2\right)+3\) chia hết cho n+2 khi 3 chia hết cho n+2

vậy \(n+2=3\Leftrightarrow n=1\)

c.\(3n+5=3\left(n+1\right)+2\) chia hết cho n+1 khi 2 chia hết cho n+1

hay \(\orbr{\begin{cases}n+1=1\\n+1=2\end{cases}\Leftrightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}}\)

8 tháng 11 2021

Giúp mình với 

8 tháng 11 2021

You what

28 tháng 10 2021

bài này chịu

DD
15 tháng 10 2021

a) \(n+5=n-2+7⋮\left(n-2\right)\Leftrightarrow7⋮\left(n-2\right)\)mà \(n\)là số tự nhiên nên 

\(n-2\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\Leftrightarrow n\in\left\{-5,1,3,9\right\}\)

mà \(n\)là số tự nhiên nên \(n\in\left\{1,3,9\right\}\).

b) \(4n+27=4n+10+17=2\left(2n+5\right)+17⋮\left(2n+5\right)\Leftrightarrow17⋮\left(2n+5\right)\)mà \(n\)là số tự nhiên nên 

\(2n+5\inƯ\left(17\right)=\left\{1,17\right\}\Leftrightarrow n\in\left\{-2,6\right\}\)

mà \(n\)là số tự nhiên nên \(n=6\).

c) \(4n+49=4n+20+29=4\left(n+5\right)+29⋮\left(n+5\right)\Leftrightarrow29⋮\left(n+5\right)\)mà \(n\)là số tự nhiên nên 

\(n+5\inƯ\left(29\right)=\left\{1,29\right\}\Leftrightarrow n\in\left\{-4,24\right\}\)

mà \(n\)là số tự nhiên nên \(n=24\).

\(\Leftrightarrow-4n+3⋮n+1\)

\(\Leftrightarrow-4n-4+7⋮n+1\)

\(\Leftrightarrow n+1\in\left\{1;7\right\}\)

hay \(n\in\left\{0;6\right\}\)

NV
5 tháng 1

\(3-4n⋮n+1\Rightarrow7-4-4n⋮n+1\)

\(\Rightarrow7-4\left(n+1\right)⋮n+1\)

\(\Rightarrow7⋮n+1\)

\(\Rightarrow n+1=Ư\left(7\right)=\left\{-7;-1;1;7\right\}\)

\(\Rightarrow n=\left\{-8;-2;0;6\right\}\)

Do n là số tự nhiên \(\Rightarrow n=\left\{0;6\right\}\)

 

\Leftrightarrow-4n-4+7⋮n+1

 

\Leftrightarrow n+1\in\left\{1;7\right\}

hoặc
n\in\left\{0;6\right\}