rút gọn: (x+y-z)2-2(x+y-z) (x+y) + (x+y)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x+y+z=0
\(\Leftrightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)(1)
Ta có: \(K=\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2}\)
\(=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2-x^2-y^2-z^2-2xy-2yz-2xz}\)
\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2+2xy+2yz-2xz\right)}\)
\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
Vậy: \(K=\dfrac{1}{3}\)
\(K=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}\)
\(K=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2}=\dfrac{1}{3}\)
(x + y + z)2 - 2(x + y + z)(x + y) + (x + y)2
= (x + y + z + x +y)2
= (2x + 2y + z)2
Chúc bạn học tốt !
\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)
\(=\left(x+y+z-x-y\right)^2\)
\(=z^2\)
Áp dụng BĐT: \(\left(a-b\right)^2=a^2-2ab+b^2\)
(x + y + z)2 – 2.(x + y + z).(x + y) + (x + y)2
= [(x + y + z) – (x + y)]2 (Áp dụng HĐT (2) với A = x + y + z ; B = x + y)
= z2.
(x+y-z)2 -2(x+y-z)(x+y) +(x+y)2 =(x+y+z-x-x-y)2=z2
áp dụng hằng đẳng thức số 2 ta có
(x+y-z)2-2(x+y-z)(x+y)+(x+y)2=(x+y-z-x-y)2=(-z)2=z2