\(\)SO SÁNH
a) 15 và \(\sqrt{235}\)
b) \(\sqrt{7}\)+ \(\sqrt{15}\)và 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\sqrt[3]{7}< \sqrt[3]{8}=2\) và \(\sqrt{15}< \sqrt{16}=4\), suy ra \(\sqrt[3]{7}+\sqrt{15}< 6\).
\(\sqrt{10}>\sqrt{9}=3\) và \(\sqrt[3]{28}>\sqrt[3]{27}=3\), suy ra \(\sqrt{10}+\sqrt[3]{28}>6\).
Vậy \(\sqrt[3]{7}+\sqrt{15}< \sqrt{10}+\sqrt[3]{28}\).
7 nhỏ hơn 9 nên căn 7 nhỏ hơn căn 9 hay căn 7 nhỏ hơn 3
15 nhỏ hơn 16 nên căn 15 nhỏ hơn căn 16 hay căn 15 nhỏ hơn 4
Vậy căn 7 + căn 15 nhỏ hơn 7
Do 21 lớn hơn 20 nên căn 21 lớn hơn căn 20
5 nhỏ hơn 6 nên căn 5 nhỏ hơn căn 6
Nên căn 21 trừ căn 5 lớn hơn căn 20 trừ căn 6
a) \(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)
Vậy \(\sqrt{7}+\sqrt{15}< 7\)
b) Vì \(\hept{\begin{cases}\sqrt{21}>\sqrt{20}\\-\sqrt{5}>-\sqrt{6}\end{cases}}\Rightarrow\sqrt{21}+\left(-\sqrt{5}\right)>\sqrt{20}+\left(-\sqrt{6}\right)\)
hay \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
a/ $3\sqrt 7=\sqrt{63}$
$2\sqrt{15}=\sqrt{60}$
Ta có: 63>60
$\Rightarrow\sqrt{63}>\sqrt{60}$ hay $3\sqrt 7>2\sqrt{15}$
b/ $-4\sqrt 5=-\sqrt{80}$
$-5\sqrt 3=-\sqrt{75}$
Ta có: 80>75
$\Rightarrow \sqrt{80}>\sqrt{75}$
$\Rightarrow-\sqrt{80}<-\sqrt{75}$ hay $-4\sqrt 5<-5\sqrt 3$
\(A=\dfrac{2}{\sqrt{17}+\sqrt{15}}\) ; \(B=\dfrac{2}{\sqrt{15}+\sqrt{13}}\)
Mà \(\sqrt{17}+\sqrt{15}>\sqrt{15}+\sqrt{13}>0\)
\(\Rightarrow\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{15}+\sqrt{13}}\)
\(\Rightarrow A< B\)
\(A=\sqrt{17}-\sqrt{15}=\dfrac{2}{\sqrt{17}+\sqrt{15}}\)
\(B=\sqrt{15}-\sqrt{13}=\dfrac{2}{\sqrt{13}+\sqrt{15}}\)
mà \(\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{13}+\sqrt{15}}\)
nên A<B
ta có \(\sqrt{7}\) sẽ nằm trong khoảng từ \(2\rightarrow3\)
còn \(\sqrt{15}\)sẽ nằm trong khoảng từ \(3\rightarrow4\)
mà \(3+4=7\) và \(\sqrt{7}< 3\)
\(\sqrt{15}< 4\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
\(7<9\Rightarrow\sqrt{7}<\sqrt{9}=3\)
\(15<16\Rightarrow\sqrt{15}<\sqrt{16}=4\)
\(\Rightarrow\sqrt{7}+\sqrt{15}<3+4=7\)
Nhầm
\(a^2=22-2\sqrt{105}=22-\sqrt{420}>22-\sqrt{441}=22-21=1\)
Kết luận giao luu=
1<a<2
Giao luu:
\(a=\sqrt{15}-\sqrt{7}\Rightarrow a^2=22-2\sqrt{105}>22-2.\sqrt{100}=22-20=2\)
\(\sqrt{15}>\sqrt{7}\Rightarrow a>0\Rightarrow a>\sqrt{2}>1\Rightarrow a>1\)
a)
Ta có
\(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
b) Ta có
\(\sqrt{17}+\sqrt{5}+9>\sqrt{16}+\sqrt{4}+9=4+2+9=15\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+9>15\)
Mặt khác
\(\sqrt{115}< \sqrt{225}=15\)
Mà \(\sqrt{17}+\sqrt{5}+9>15\)
\(\Rightarrow\sqrt{115}< \sqrt{17}+\sqrt{5}+9\)
ta có \(\sqrt{7}< \sqrt{9}\)
và \(\sqrt{15}< \sqrt{16}\)
=> \(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)
mà \(\sqrt{9}+\sqrt{16}=3+4=7\)
=> \(\sqrt{7}+\sqrt{15}< 7\)
a) Ta có: \(\left(2+\sqrt{3}\right)^2=4+2.2\sqrt{3}+\left(\sqrt{3}\right)^2=7+\sqrt{48}\)
\(\left(1+\sqrt{5}\right)^2=1+2\sqrt{5}+5=6+2\sqrt{5}=6+\sqrt{20}\)
\(\hept{\begin{cases}\sqrt{20}< \sqrt{48}\\6< 7\end{cases}}\Rightarrow\sqrt{20}+6< \sqrt{48}+7\)
\(\Rightarrow\left(1+\sqrt{5}\right)^2< \left(2+\sqrt{3}\right)^2\Rightarrow1+\sqrt{5}< 2+\sqrt{3}\)
b) \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)
ta có \(15=\sqrt{225}\)
Mà \(\sqrt{235}>\sqrt{225}\Rightarrow\sqrt{235}>15\)
a) \(15=\sqrt{225}\)
\(\sqrt{235}=\sqrt{235}\)
vi \(225< 235\)nen \(\sqrt{225}< \sqrt{235}\)
vay \(15< \sqrt{235}\)
Câu b)
Ta có \(\sqrt{7}< \sqrt{9}\Leftrightarrow\sqrt{7}< 3\)
\(\sqrt{15}< \sqrt{16}\Leftrightarrow\sqrt{15}< 4\)
Cộng theo vế: \(\sqrt{7}+\sqrt{15}< 3+4\) hay \(\sqrt{7}+\sqrt{15}< 7\)