Chia các đa thức
a) 3x^4-2x^3-2x^2+ã-8) : (x^2-2)
b) (2x^3-26x-24) : (x^2+4x+3)
c)(x^3-7X+6) : x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
55555555555555555
666666666666666666666666666
88888888888888888888
\( a)\dfrac{{3{x^4} - 2{x^3} - 2{x^2} + 4x - 8}}{{{x^2} - 2}}\\ = \dfrac{{3{x^4} - 2{x^3} - 6{x^2} + 4{x^2} + 4x - 8}}{{{x^2} - 2}}\\ = \dfrac{{3{x^2}\left( {{x^2} - 2} \right) - 2x\left( {{x^2} - 2} \right) + 4\left( {{x^2} - 2} \right)}}{{{x^2} - 2}}\\ = \dfrac{{\left( {{x^2} - 2} \right)\left( {3{x^2} - 2x + 4} \right)}}{{{x^2} - 2}}\\ = 3{x^2} - 2x + 4 \)
\( b)\dfrac{{2{x^3} - 26x - 24}}{{{x^2} + 4x + 3}}\\ = \dfrac{{2\left( {{x^3} - 13x - 12} \right)}}{{x + 3x + x + 3}}\\ = \dfrac{{2\left( {{x^3} + {x^2} - {x^2} - x - 12x - 12} \right)}}{{x\left( {x + 3} \right) + x + 3}}\\ = \dfrac{{2\left[ {{x^2}\left( {x + 1} \right) - x\left( {x + 1} \right) - 12\left( {x + 1} \right)} \right]}}{{\left( {x + 3} \right)\left( {x + 1} \right)}}\\ = \dfrac{{2\left( {x + 1} \right)\left( {{x^2} - x - 12} \right)}}{{\left( {x + 3} \right)\left( {x + 1} \right)}}\\ = \dfrac{{2\left( {{x^2} + 3x - 4x - 12} \right)}}{{x + 3}}\\ = \dfrac{{2\left[ {x\left( {x + 3} \right) - 4\left( {x + 3} \right)} \right]}}{{x + 3}}\\ = \dfrac{{2\left( {x + 3} \right)\left( {x - 4} \right)}}{{x + 3}}\\ = 2\left( {x - 4} \right)\\ = 2x - 8\)
3x4-3x3-2x2+4x-8:x2-2
=(3x4-6x2)-(2x3-4x)+(4x2-8):(x2-2)
=3x2(x2-2)-2x(x2-2)+4(x2-2):(x2-2)
=(3x2-2x+4)(x2-2):(x2-2)
=3x2-2x+4
a: 3x^3+2x^2-7x+a chia hêt cho 3x-1
=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1
=>a-2=0
=>a=2
c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4
=>3a+19=4
=>3a=-15
=>a=-5
d: 2x^3-x^2+ax+b chiahêt cho x^2-1
=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1
=>a+2=0 và b-1=0
=>a=-2 và b=1
a) B = \(x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x=1\)
Ap dung dinh li Be du, ta có A chia hết cho B khi số dư = 0.
A = \(f\left(1\right)=1^4-3.1^3+6.1^2-7m+m=0\)
\(\Leftrightarrow m=\dfrac{2}{3}\)
Các câu còn lại đơn giản, áp dụng như câu a là được.
a ) Theo lược đồ hooc - ne
Để \(A\) chia hết cho B thì :
\(-3+m=0\Rightarrow m=3\)
Vậy \(m=3\)
a: \(A\left(x\right)=2x^4-x^3+3x^2+9x-2\)
\(B\left(x\right)=2x^4-5x^3-x+9\)
\(C\left(x\right)=x^4+4x^2+5\)
A(x): bậc 4; hệ số cao nhất là 2; hệ số tự do là -2
B(x): bậc 4; hệ số cao nhất là 4; hệ số tự do là 9
b: M(x)=A(x)+B(x)=4x^4-6x^3+3x^2+8x+7
N(x)=B(x)-A(x)=-4x^3-3x^2-10x+11
c: Q(x)=-N(x)=4x^3+3x^2+10x-11
a) 6x3 + 3x2 + 4x + 2
= ( 6x3 + 3x2 ) + ( 4x + 2 )
= 3x2( 2x + 1 ) + 2( 2x + 1 )
= ( 2x + 1 )( 3x2 + 2 )
=> ( 6x3 + 3x2 + 4x + 2 ) : ( 3x2 + 2 ) = 2x + 1
b) 2x3 - 26x - 24
= 2( x3 - 13x - 12 )
= 2( x3 + 4x2 - 4x2 + 3x - 16x - 12 )
= 2[ ( x3 + 4x2 + 3x ) - ( 4x2 + 16x + 12 ) ]
= 2[ x( x2 + 4x + 3 ) - 4( x2 + 4x + 3 ) ]
= 2( x2 + 4x + 3 )( x - 4 )
=> ( 2x3 - 26x - 24 ) : ( x2 + 4x + 3 ) = 2( x - 4 ) = 2x - 8
c) x3 - 7x + 6
= x3 - 3x2 + 3x2 + 2x - 9x - 6
= ( x3 - 3x2 + 2x ) + ( 3x2 - 9x + 6 )
= x( x2 - 3x + 2 ) + 3( x2 - 3x + 2 )
= ( x2 - 3x + 2 )( x + 3 )
=> ( x3 - 7x + 6 ) : ( x + 3 ) = x2 - 3x + 2
a,\(\left(6x^3+3x^2+4x+2\right)\div\left(3x^2+2\right)\)
\(=\left[3x^2\left(2x+1\right)+2\left(2x+1\right)\right]\div\left(3x^2+2\right)\)
\(=\left[\left(3x^2+2\right)\left(2x+1\right)\right]\div\left(3x^2+2\right)\)
\(=2x+1\)