K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 5

Lời giải:
a.

Khi $m=1$ thì PT trở thành:
$x^2-4x+4=0$

$\Leftrightarrow (x-2)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2$
b.

Để PT có 2 nghiệm pb $x_1,x_2$ thì:

$\Delta'=(m+1)^2-(m^2-2m+5)>0$

$\Leftrightarrow m>1$
Áp dụng định lý Viet:

$x_1+x_2=2(m+1)$

$x_1x_2=m^2-2m+5$

Với $m>1$ thì $x_1+x_2=2(m+1)>0; x_1x_2=m^2-2m+5>0$

$\Rightarrow x_1>0; x_2>0$
Khi đó:

$\sqrt{4x_1^2+4mx_1+m^2}+\sqrt{x_2^2+4mx_2+4m^2}=7m+2$

$\Leftrightarrow \sqrt{(2x_1+m)^2}+\sqrt{(x_2+2m)^2}=7m+2$

$\Leftrightarrow |2x_1+m|+|x_2+2m|=7m+2$

$\Leftrightarrow 2x_1+m+x_2+2m=7m+2$

$\Leftrightarrow x_1+(x_1+x_2)=4m+2$

$\Leftrightarrow x_1+2m+2=4m+2$

$\Leftrightarrow x_1=2m$

$x_2=2(m+1)-x_1=2$
$m^2-2m+5=x_1x_2=2m.2=4m$

$\Leftrightarrow m^2-6m+5=0$

$\Leftrightarrow (m-1)(m-5)=0$

Do $m>1$ nên $m=5$

21 tháng 5

Lời giải:
a.

Khi 𝑚=1 thì PT trở thành:
𝑥2−4𝑥+4=0

⇔(𝑥−2)2=0⇔𝑥−2=0⇔𝑥=2
b.

Để PT có 2 nghiệm pb 𝑥1,𝑥2 thì:

Δ′=(𝑚+1)2−(𝑚2−2𝑚+5)>0

⇔𝑚>1
Áp dụng định lý Viet:

𝑥1+𝑥2=2(𝑚+1)

𝑥1𝑥2=𝑚2−2𝑚+5

Với 𝑚>1 thì 𝑥1+𝑥2=2(𝑚+1)>0;𝑥1𝑥2=𝑚2−2𝑚+5>0

⇒𝑥1>0;𝑥2>0
Khi đó:

4𝑥12+4𝑚𝑥1+𝑚2+𝑥22+4𝑚𝑥2+4𝑚2=7𝑚+2

⇔(2𝑥1+𝑚)2+(𝑥2+2𝑚)2=7𝑚+2

⇔∣2𝑥1+𝑚∣+∣𝑥2+2𝑚∣=7𝑚+2

⇔2𝑥1+𝑚+𝑥2+2𝑚=7𝑚+2

⇔𝑥1+(𝑥1+𝑥2)=4𝑚+2

⇔𝑥1+2𝑚+2=4𝑚+2

⇔𝑥1=2𝑚

𝑥2=2(𝑚+1)−𝑥1=2
𝑚2−2𝑚+5=𝑥1𝑥2=2𝑚.2=4𝑚

⇔𝑚2−6𝑚+5=0

⇔(𝑚−1)(𝑚−5)=0

Do 𝑚>1 nên 𝑚=5

1 tháng 12 2021

B4:

\(CTTQ:Na_xS_yO_z\left(x,y,z:nguy\text{ê}n,d\text{ươ}ng\right)\\ n_{Na}=\dfrac{4.6}{23}=0,2\left(mol\right);n_S=\dfrac{3,2}{32}=0,1\left(mol\right);n_O=\dfrac{4,8}{16}=0,3\left(mol\right)\\ x:y:z=0,2:0,1:0,3=2:1:3\\ \Rightarrow x=2;y=1;z=3\\ \Rightarrow CTHH:Na_2SO_3\)

1 tháng 12 2021

cảm ơn!!

bạn giúp tôi bài khác có được ko?

làm ơn...

Bài 3: 

b: \(\dfrac{1}{x^2-2x}=\dfrac{x+2}{x\left(x-2\right)\left(x+2\right)}\)

\(\dfrac{2}{2x-4}=\dfrac{1}{x-2}=\dfrac{x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(\dfrac{x}{x-2}=\dfrac{x^2\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)

 

11 tháng 12 2021

C

C

A

A

D

A

A

D

A

C

10 tháng 8 2021

1 am going to send

2 will get

3 will do

4 will be

5 are going to visit

6 will win

7 am going to take

8 are going

9 will go

10 is going to defeat

11 is going to have

12 will never lie

13 will fly

14 won't tell

15 will like

a: Xét ΔAEH có

AM vừa là đường cao, vừa là trung tuyến

=>ΔAEH cân tại A

b: Xét ΔAHI và ΔAKI có

AH=AK

góc HAI=góc KAI

AI chung

=>ΔAHI=ΔAKI

=>góc AKI=góc AHI=90 độ

=>KI vuông góc AC

=>KI//AB

c: HI=IK

IK<IC

=>HI<IC

 

13 tháng 12 2021

Bố cục của bài văn biểu cảm gồm 3 phần

13 tháng 12 2021

gồm 3 phần 

3 tháng 7 2023

(a) \(A=\dfrac{3}{x-2}\in Z\)

\(\Rightarrow\left(x-2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x=4\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{-2;0;2;4\right\}.\)

 

(b) \(B=-\dfrac{11}{2x-3}\in Z\)

\(\Rightarrow\left(2x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=1\\2x-3=-1\\2x-3=11\\2x-3=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=7\\x=-4\end{matrix}\right.\)

Vậy: \(x\in\left\{-4;1;2;7\right\}.\)

 

(c) \(C=\dfrac{x+3}{x+1}=\dfrac{\left(x+1\right)+2}{x+1}=1+\dfrac{2}{x+1}\in Z\Rightarrow\dfrac{2}{x+1}\in Z\)

\(\Rightarrow\left(x+1\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\\x+1=2\\x+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\\x=-3\end{matrix}\right.\)

Vậy: \(x\in\left\{-3;-2;0;1\right\}.\)

 

(d) \(D=\dfrac{2x+10}{x+3}=\dfrac{2\left(x+3\right)+4}{x+3}=2+\dfrac{4}{x+3}\in Z\Rightarrow\dfrac{4}{x+3}\in Z\)

\(\Rightarrow\left(x+3\right)\inƯ\left(4\right)=\left\{\pm1;\pm2\pm4\right\}\)

\(\Rightarrow x\in\left\{-2;-4;-1;-5;1;-7\right\}\)

3 tháng 7 2023

câu (a) thiếu điều kiện x khác 2 rồi bạn êi

17 tháng 9 2021

Gọi tam giác ABC vuông tại A, trung tuyến AM, đường cao AH

\(\Rightarrow AM=5\left(cm\right);AH=4\left(cm\right)\)

Ta có AM là trung tuyến ứng với cạnh huyền BC

\(\Rightarrow BC=2AM=10\left(cm\right)\)

Áp dụng HTL tam giác \(AH\cdot BC=AB\cdot AC\Rightarrow AB\cdot AC=40\Rightarrow AB=\dfrac{40}{AC}\\ \dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{16}=\dfrac{1}{\dfrac{1600}{AC^2}}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{AC^4+1600}{1600AC^2}=\dfrac{100AC^2}{1600AC^2}\Rightarrow AC^4-100AC^2+1600=0\\ \Rightarrow\left(AC^2-80\right)\left(AC^2-20\right)=0\\ \Rightarrow\left[{}\begin{matrix}AC^2=80\\AC^2=20\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}AC=4\sqrt{5}\left(AC>0\right)\\AC=2\sqrt{5}\left(AC>0\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}AB=2\sqrt{5}\\AB=4\sqrt{5}\end{matrix}\right.\)

Vậy với AB là cạnh góc vuông lớn thì \(\left(AB;AC;BC\right)=\left(4\sqrt{5};2\sqrt{5};10\right)\)

 

17 tháng 9 2021

Em cần cả hình vẽ lẫn lời giải luôn nha :3