tìm X, biết:1/6+1/12+1/20...+1/Xx(X+1)=1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
(1/2 + 1/4 + 1/8 + 1/16) = 8/16 + 4/16 + 2/16 + 1/16 = 15/16.
1/2 + 1/6 + 1/12 + 1/20 +…+ 1/132 = 1/(1.2) + 1/(2.3) + 1/(3.4) + 1/(4.5) +…+1/(11.12)
= (1 – 1/2) + (1/2 – 1/3) + (1/3 – 1/4) + (1/4 – 1/5) +…+ (1/11 – 1/12)
= 1 – 1/12 = 11/12
Vậy x = (15/16) : (11/12) = 45/44.
(1/2+1/4+1/8+1/16):x=1/2+1/6+1/12+1/20+...+1/132
(1-1/2+1/2-1/4+1/4-1/8+1/8-1/16):x=1/1x2+1/2x3+1/3x4+1/4x5+...+1/11x12
(1-1/16):x=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/11-1/12
15/16:x=1-1/12
15/16:x=11/12
x=15/16:11/12
x=45/44
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{11-10}{10.11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
Phương trình ban đầu tương đương với:
\(10x+\frac{10}{11}=11x\)
\(\Leftrightarrow x=\frac{10}{11}\)
\(\frac{4}{5}\times\left(20-x\right)=4\)
\(20-x=4:\frac{4}{5}\)
\(20-x=5\) Mình Chúc Các Bn Học Giỏi !!!!!!!!!!!!!!!!!!!
\(x=20-5\)
\(x=15\)
(1/2+1/6+1/12+1/20) x (20 - x) =4
4/5 x (20-x)= 4
20-x=4:4/5
20-x=5
x=15
1/2 + 1/6 + 1/12 + 1/20 + 1/30 1/x = 41/42
5/6 + 1/x = 41/42
1/x = 41/42 - 5/6
1/x = 1/7
vậy x = 7
a. \(=\left(\dfrac{12}{15}+\dfrac{3}{15}\right)+\left(\dfrac{4}{3}+\dfrac{5}{3}\right)+\left(\dfrac{1}{4}+\dfrac{3}{4}\right)\\ =1+2+1=4\)
b. \(x\times\dfrac{3}{4}=\dfrac{1\times3\times6\times5}{6\times5\times5\times3}\\ x\times\dfrac{3}{4}=\dfrac{1}{5}\\ x=\dfrac{1}{5}:\dfrac{3}{4}\\ x=\dfrac{4}{15}\)
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x\times\left(x+1\right)}=\dfrac{1}{4}\)
\(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+...+\dfrac{1}{x\times\left(x+1\right)}=\dfrac{1}{4}\)
\(\dfrac{3-2}{2\times3}+\dfrac{4-3}{3\times4}+\dfrac{5-4}{4\times5}+...+\dfrac{\left(x+1\right)-x}{x\times\left(x+1\right)}=\dfrac{1}{4}\)
\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{4}\)
\(\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1}{4}\)
\(\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{1}{4}\)
\(\dfrac{1}{x+1}=\dfrac{1}{4}\)
\(\Rightarrow x+1=4\)
\(x=4-1\)
\(x=3\)
Vậy \(x=3\)