\(\dfrac{3}{4}\)+\(\dfrac{1}{4}\):x=2
giúp vss ạ , sáng mai e thi chuyển cấp gặp bài này là chết toi ;-;
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}\left(x\ge0\right)\)
để P>\(\dfrac{1}{4}< =>\dfrac{2\sqrt{x}}{\sqrt{x}+3}>\dfrac{1}{4} < =>\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{1}{4}>0\)
<=>\(\dfrac{4.2\sqrt{x}}{4\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}+3}{4\left(\sqrt{x}+3\right)}>0\)
<=>\(\dfrac{8\sqrt{x}-\sqrt{x}-3}{4\left(\sqrt{x}+3\right)}>0< =>\dfrac{7\sqrt{x}-3}{4\left(\sqrt{x}+3\right)}>0\)
ta có \(\sqrt{x}\ge0\left(\forall x\right)=>\sqrt{x}+3\ge3=>4\left(\sqrt{x}+3\right)>12\)
hay \(4\left(\sqrt{x}+3\right)>0\)
vậy để \(\dfrac{7\sqrt{x}-3}{4\left(\sqrt{x}+3\right)}>0< =>7\sqrt{x}-3>0< =>7\sqrt{x}>3< =>\sqrt{x}>\dfrac{3}{7}\)
<=>\(x>\dfrac{9}{49}\)
vậy x>9/49 thì pP>1/4
Hướng làm:
Thấy cả tử mẫu cộng lại đều bằng 2021 → Cộng thêm 1 rồi quy đồng với mỗi phân thức
\(\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\\ \Leftrightarrow\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\\ \Leftrightarrow\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}\right)=0\\ \Leftrightarrow x+2021=0\Leftrightarrow x=-2021\)
\(< =>\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\)
\(< =>\dfrac{x+2+2019}{2019}+\dfrac{x+3+2018}{2018}=\dfrac{x+4+2017}{2017}+\dfrac{x+2021}{2021}\)
\(< =>\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\)
\(< =>\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}=\right)=0\)
\(< =>x+2021=0< =>x=-2021\)
Vậy....
ĐKXĐ: \(x\notin\left\{0;-9\right\}\)
Ta có: \(\dfrac{1}{x+9}-\dfrac{1}{x}=\dfrac{1}{5}+\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{20x}{20x\left(x+9\right)}-\dfrac{20\left(x+9\right)}{20x\left(x+9\right)}=\dfrac{4x\left(x+9\right)+5x\left(x+9\right)}{20x\left(x+9\right)}\)
Suy ra: \(4x^2+36x+5x^2+45x=20x-20x-180\)
\(\Leftrightarrow9x^2+81x+180=0\)
\(\Leftrightarrow x^2+9x+20=0\)
\(\Leftrightarrow x^2+4x+5x+20=0\)
\(\Leftrightarrow x\left(x+4\right)+5\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(nhận\right)\\x=-5\left(nhận\right)\end{matrix}\right.\)
Vậy: S={-4;-5}
\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
ĐKXĐ: \(x\ne\pm2\)
\(\dfrac{x+1}{x-2}=\dfrac{2}{x^2-4}\)
\(\Rightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{x^2-4}=\dfrac{2}{x^2-4}\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)=2\)
\(\Leftrightarrow x^2+3x+2=2\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\) (thỏa mãn)
đkxđ: \(x ≠2; x ≠-2\)
\(\dfrac{x+1}{x-2}=\dfrac{2}{x^2-4}\)
\(⇔\dfrac{(x+1)(x+2)}{x^2-4}=\dfrac{2}{x^2-4}\)
\(⇔(x+1)(x+2)=2\)
\(⇔x^2+3x=0\)
\(⇔x(x+3)=0\)
\(⇔\left[\begin{array}{} x=0\\ x+3=0 \end{array} \right.\)
\(⇔\left[\begin{array}{} x=0\\ x=-3 \end{array} \right.\)
ý bạn là tìm x hay sao?
\(a,\Leftrightarrow\dfrac{\left(x-2\right)\left(x+1\right)}{x+1}=\dfrac{x^2-3x-2}{x-1}\left(x\ne\pm1\right)\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=x^2-3x-2\\ \Leftrightarrow x^2-3x+2=x^2-3x-2\\ \Leftrightarrow2=-2\Leftrightarrow x\in\varnothing\\ b,\Leftrightarrow\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{x^2-2x+4}=x+2\\ \Leftrightarrow x+2=x+2\\ \Leftrightarrow x\in R\)
alo cho tui hỏi bạn có phải Dương Ngọc Lan Hương Trường THCS Minh Thuận 3 k dọ
\(\dfrac{3}{4}+\dfrac{1}{4}:x=2\)
=>\(\dfrac{1}{4}:x=2-\dfrac{3}{4}=\dfrac{5}{4}\)
=>\(x=\dfrac{1}{4}:\dfrac{5}{4}=\dfrac{1}{5}\)
\(\dfrac{3}{4}+\dfrac{1}{4}:x=2\)
\(=>\dfrac{1}{4}:x=2-\dfrac{3}{4}=\dfrac{8}{4}-\dfrac{3}{4}\)
\(=>\dfrac{1}{4}:x=\dfrac{5}{4}\)
\(=>x=\dfrac{1}{4}:\dfrac{5}{4}=\dfrac{1}{4}\times\dfrac{4}{5}\)
\(=>x=\dfrac{1}{5}\)
Vậy...
`#Hoshiii`