K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{3}{4}+\dfrac{1}{4}:x=2\)

=>\(\dfrac{1}{4}:x=2-\dfrac{3}{4}=\dfrac{5}{4}\)

=>\(x=\dfrac{1}{4}:\dfrac{5}{4}=\dfrac{1}{5}\)

17 tháng 5

\(\dfrac{3}{4}+\dfrac{1}{4}:x=2\)

\(=>\dfrac{1}{4}:x=2-\dfrac{3}{4}=\dfrac{8}{4}-\dfrac{3}{4}\)

\(=>\dfrac{1}{4}:x=\dfrac{5}{4}\)

\(=>x=\dfrac{1}{4}:\dfrac{5}{4}=\dfrac{1}{4}\times\dfrac{4}{5}\)

\(=>x=\dfrac{1}{5}\)

Vậy...

`#Hoshiii`

20 tháng 5 2021

\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}\left(x\ge0\right)\)

để P>\(\dfrac{1}{4}< =>\dfrac{2\sqrt{x}}{\sqrt{x}+3}>\dfrac{1}{4} < =>\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{1}{4}>0\)

<=>\(\dfrac{4.2\sqrt{x}}{4\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}+3}{4\left(\sqrt{x}+3\right)}>0\)

<=>\(\dfrac{8\sqrt{x}-\sqrt{x}-3}{4\left(\sqrt{x}+3\right)}>0< =>\dfrac{7\sqrt{x}-3}{4\left(\sqrt{x}+3\right)}>0\)

ta có \(\sqrt{x}\ge0\left(\forall x\right)=>\sqrt{x}+3\ge3=>4\left(\sqrt{x}+3\right)>12\)

hay \(4\left(\sqrt{x}+3\right)>0\)

vậy để \(\dfrac{7\sqrt{x}-3}{4\left(\sqrt{x}+3\right)}>0< =>7\sqrt{x}-3>0< =>7\sqrt{x}>3< =>\sqrt{x}>\dfrac{3}{7}\)

<=>\(x>\dfrac{9}{49}\)

vậy x>9/49 thì pP>1/4

8 tháng 5 2021

Hướng làm:

Thấy cả tử mẫu cộng lại đều bằng 2021 → Cộng thêm 1 rồi quy đồng với mỗi phân thức

\(\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\\ \Leftrightarrow\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\\ \Leftrightarrow\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}\right)=0\\ \Leftrightarrow x+2021=0\Leftrightarrow x=-2021\)

8 tháng 5 2021

\(< =>\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\)

\(< =>\dfrac{x+2+2019}{2019}+\dfrac{x+3+2018}{2018}=\dfrac{x+4+2017}{2017}+\dfrac{x+2021}{2021}\)

\(< =>\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\)

\(< =>\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}=\right)=0\)

\(< =>x+2021=0< =>x=-2021\)

Vậy....

 

ĐKXĐ: \(x\notin\left\{0;-9\right\}\)

Ta có: \(\dfrac{1}{x+9}-\dfrac{1}{x}=\dfrac{1}{5}+\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{20x}{20x\left(x+9\right)}-\dfrac{20\left(x+9\right)}{20x\left(x+9\right)}=\dfrac{4x\left(x+9\right)+5x\left(x+9\right)}{20x\left(x+9\right)}\)

Suy ra: \(4x^2+36x+5x^2+45x=20x-20x-180\)

\(\Leftrightarrow9x^2+81x+180=0\)

\(\Leftrightarrow x^2+9x+20=0\)

\(\Leftrightarrow x^2+4x+5x+20=0\)

\(\Leftrightarrow x\left(x+4\right)+5\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(nhận\right)\\x=-5\left(nhận\right)\end{matrix}\right.\)

Vậy: S={-4;-5}

11 tháng 11 2021

1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)

hay x=10

11 tháng 11 2021

sao câu 1 hoài v ạ.Còn câu 2,3 nữa á.

11 tháng 11 2021

1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)

hay x=10

10 tháng 11 2021

\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

10 tháng 11 2021

GHI RÕ DÙM MÌNH ĐK CỦA CẢ 3 CÂU LUÔN ĐC KO Á.

NV
16 tháng 4 2022

ĐKXĐ: \(x\ne\pm2\)

\(\dfrac{x+1}{x-2}=\dfrac{2}{x^2-4}\)

\(\Rightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{x^2-4}=\dfrac{2}{x^2-4}\)

\(\Rightarrow\left(x+1\right)\left(x+2\right)=2\)

\(\Leftrightarrow x^2+3x+2=2\)

\(\Leftrightarrow x^2+3x=0\)

\(\Leftrightarrow x\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\) (thỏa mãn)

16 tháng 4 2022

đkxđ: \(x ≠2; x ≠-2\)

\(\dfrac{x+1}{x-2}=\dfrac{2}{x^2-4}\)

\(⇔\dfrac{(x+1)(x+2)}{x^2-4}=\dfrac{2}{x^2-4}\)

\(⇔(x+1)(x+2)=2\)

\(⇔x^2+3x=0\)

\(⇔x(x+3)=0\)

\(⇔\left[\begin{array}{} x=0\\ x+3=0 \end{array} \right.\)

\(⇔\left[\begin{array}{} x=0\\ x=-3 \end{array} \right.\)

29 tháng 11 2021

29 tháng 11 2021

Không có mô tả.

Không biết nãy bị lỗi ở đâu, mình gửi lại:<

20 tháng 1 2022

x= 3/20

20 tháng 1 2022

4/30

16 tháng 11 2021

ý bạn là tìm x hay sao?

\(a,\Leftrightarrow\dfrac{\left(x-2\right)\left(x+1\right)}{x+1}=\dfrac{x^2-3x-2}{x-1}\left(x\ne\pm1\right)\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=x^2-3x-2\\ \Leftrightarrow x^2-3x+2=x^2-3x-2\\ \Leftrightarrow2=-2\Leftrightarrow x\in\varnothing\\ b,\Leftrightarrow\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{x^2-2x+4}=x+2\\ \Leftrightarrow x+2=x+2\\ \Leftrightarrow x\in R\)

16 tháng 11 2021

 alo cho tui hỏi bạn có phải Dương Ngọc Lan Hương Trường THCS Minh Thuận 3 k dọ