K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

Bạn chử mai làm đúng rồi. Chỉ là nhầm ở phần kết luận thôi. Mình giúp bạn ấy hoàn thành bài làm thôi nhé.

Ta có: \(\left(2x^2+x\right)^2< 4A\le\left(2x^2+x+2\right)^2\)

\(\Rightarrow\orbr{\begin{cases}4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+1\right)^2\\4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-3=0\\5x^2=0\end{cases}}\)

\(\Leftrightarrow x=3;-1;0\)

\(\Leftrightarrow A=121;1\)

9 tháng 10 2017

cái này dùng phương pháp đánh giá tức là chặn ấy , em tự làm nhé, bận lắm

29 tháng 5 2016

Ta thấy 11x⋮6 nên x⋮6.

Đặt x=6k (k nguyên).Thay vào (1) và rút gọn ta đượ c: 11k+3y=20

Biểu thị ẩn mà hệ số của nó có giá trị tuyệt đói nhỏ ( là y ) theo k ta được :

   y = 20 -11k3

Tách guyên giá trị nguyên của biểu thức này :

   y = 7 - 4k +k - 13

Lại đặt k - 13 = t với t nguyên => k = 3t + 1 . Do đó :

= 7 - 4 ( 3t + 1) +t = 3 - 11 = tx = 6k = 6 ( 3t+1) = 18t + 6

Thay các biểu thức của x và y vào (1), phương trình đượ c nghiệm đúng.

 Vậy các nghiệm nguyên của (1) đượ c biểu thị bở i công thức :

{=18t+6y=3−11t vớ i t là số nguyên tùy ý

 mk nha các bạn !!!

29 tháng 5 2016

Thành lập hội VICTOR_TÊN NHA

12 tháng 4 2016

Câu 1: xy + x - y = 4

<=> (xy + x) - (y+ 1) = 3

<=> x(y+1) - (y + 1) = 3

<=> (y + 1) (x - 1) = 3

Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.

Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:

* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)

* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)

Vậy x = y = 2.

Câu 2:

Ta có:

 (a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0

Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c

5 tháng 3 2018

 \(\frac{a-b}{x}=\frac{b-c}{y}=\frac{c-a}{z}\)

30 tháng 1 2019

\(\text{1 . 2016}^z\text{ + 2017}^y\text{ = 2018}^x\)

\(\text{TH1 : z = 0}\)

\(\Rightarrow2016^0+2017^y=2018^x\)

\(\Rightarrow1+2017^y=2018^x\)

\(\Rightarrow y=1;x=1\)

\(\text{TH2 : y = 0 }\)

\(\Rightarrow2016^z+2017^0=2018^x\)

\(\Rightarrow2016^z+1=2018^x\)

\(\text{Vế trái là số lẻ khi x }\ge1\)

\(\text{Vế phải là số chẵn khi x }\ge1\)

\(\Rightarrow\text{TH2 bị loại}\)

\(\text{TH3 : }x,y,z\ne0\)

\(\Rightarrow2016^z+2017^y\text{ là số lẻ}\)

\(\Rightarrow2018^x\text{ là số chẵn}\)

\(\Rightarrow\text{TH3 bị loại}\)

\(\text{Vậy z = 0 ; y = 1 ; x = 1}\)