Một con xúc xắc được gieo 3 lần.Kết quả các lần thứ nhất,thứ hai,thứ ba được ghi lại lần lượt là x,y,z.Cho biết x+y = z. Tính xác suất thực nghiệm của khả năng ít nhất một trong các số x,y,z là 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không gian mẫu là tập hợp số chấm xuất hiện khi gieo con xúc xắc hai lần liên tiếp khi đó \(n\left( \Omega \right) = 6.6 = 36\)
A = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)} \( \Rightarrow P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\)
B = {(1; 2); (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)} \( \Rightarrow P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\)
C = {(2; 6); (3; 5); (4; 4); (5; 3); (6; 2)} \( \Rightarrow P\left( C \right) = \frac{5}{{36}}\)
D = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)} \( \Rightarrow P\left( D \right) = \frac{6}{{36}} = \frac{1}{6}\)
Do đó
\(P\left( A \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( B \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( C \right).P\left( D \right) = \frac{5}{{36}}.\frac{1}{6} = \frac{5}{{216}}\)
Mặt khác
AC = \(\emptyset \Rightarrow P\left( {AC} \right) = 0\)
BC = {(6; 2)} \( \Rightarrow P\left( {BC} \right) = \frac{1}{{36}}\)
CD = \(\emptyset \Rightarrow P\left( {CD} \right) = 0\)
Khi đó \(P\left( {AC} \right) \ne P\left( A \right).P\left( C \right);P\left( {BC} \right) \ne P\left( B \right).P\left( C \right);P\left( {CD} \right) \ne P\left( C \right).P\left( D \right)\)
Vậy các cặp biến cố A và C; B và C, C và D không độc lập.
Đáp án B
Phương pháp:
Phương trình a x 2 + b x + c = 0 ( a ≠ 0 ) có nghiệm
⇔ ∆ ≥ 0
Gọi A là biến cố:
"Phương trình a x 2 + b x + c = 0 có nghiệm"
b: 2=1+1
3=1+2=2+1
4=1+3=2+2=3+1
5=1+4=2+3=3+2=4+1
6=1+5=2+4=3+3=4+2=5+1
7=1+6=2+5=3+4=4+3=5+2=6+1
8=2+6=3+5=4+4=5+3=6+2
9=3+6=4+5=5+4=6+3
10=4+6=5+5=6+4
11=5+6=6+5
12=6+6
=>Bảng tần số/xác suất thực nghiệm là:
điểm số | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
tần số | 1 | 2 | 3 | 4 | 5 | 6 | 5 | 4 | 3 | 2 | 1 |
tần suất | 2,8% | 5,6% | 8,3% | 11.1% | 13,9% | 16,7% | 13,9% | 11,1% | 8,3% | 5,6% | 2.8% |
a: Điểm có khả năng xuất hiện nhiều nhất là 7 điễm
xác suất là 16,7%
b: 2=1+1
3=1+2=2+1
4=1+3=2+2=3+1
5=1+4=2+3=3+2=4+1
6=1+5=2+4=3+3=4+2=5+1
7=1+6=2+5=3+4=4+3=5+2=6+1
8=2+6=3+5=4+4=5+3=6+2
9=3+6=4+5=5+4=6+3
10=4+6=5+5=6+4
11=5+6=6+5
12=6+6
=>Bảng tần số/xác suất thực nghiệm là:
điểm số | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
tần số | 1 | 2 | 3 | 4 | 5 | 6 | 5 | 4 | 3 | 2 | 1 |
tần suất | 2,8% | 5,6% | 8,3% | 11.1% | 13,9% | 16,7% | 13,9% | 11,1% | 8,3% | 5,6% | 2.8% |
a: Điểm có khả năng xuất hiện nhiều nhất là 7 điễm
xác suất là 16,7%
Số lần xuất hiện mặt có số chấm lẻ là:
\(21 + 8 + 18 = 47\) (lần)
Xác suất thực nghiệm của biến cố “Gieo được mặt có số chấm là số lẻ” là \(\frac{{47}}{{120}}\).
a.
Các số chẵn là 2;4;6
Số lần được 2 là 20, số lần được 4 là 22, số lần được 6 là 15.
Số lần được số chẵn là: 20+22+15=57
Xác suất thực nghiệm của sự kiện “Số chấm xuất hiện là số chẵn” là:\(\frac{{57}}{{100}} = 57\% \)
b.
Các số lớn hơn 2 là 3;4;5;6
Số lần được 3 là 18, số lần được 4 là 22, số lần được 5 là 10, số lần được 6 là 15.
Số lần được số lớn hơn 2 là: 18+22+10+15=65
Xác suất thực nghiệm của sự kiện “Số chấm xuất hiện lớn hơn 2” là:\(\frac{{65}}{{100}} = 65\% \)
a: A={(1;1); (1;2); ...; (1;6)}
=>n(A)=6
P(A)=6/36=1/6
b: B={(1;4); (2;3); (3;2); (4;1)}
=>P(B)=4/36=1/9
c: C={(3;1); (4;2); (5;3); (6;4)}
=>P(C)=4/36=1/9
d: D={(1;3); (1;5); (1;1); (3;5); (3;1); (3;3); (5;3); (5;1); (5;5)}
=>P(D)=9/36=1/4
a) Xác suất thực nghiệm để gieo được đỉnh số 4 là: \(9:50 = \frac{9}{{50}}\)
b) Xác suất thực nghiệm để gieo được đỉnh có số chẵn: \(\left( {14{\rm{ }} + {\rm{ }}9} \right):50{\rm{ }} = \;\frac{{23}}{{50}}\)
Chọn C
Số phần tử của không gian mẫu của phép thử gieo một con súc sắc hai lần liên tiếp là 36.
Để phương trình bậc hai x 2 + bx + c = 0 có nghiệm là (*) với
Gọi A là biến cố chọn cặp số (b;c) thỏa mãn trong đó
Khi c = 1: Các giá trị của b thỏa mãn điều kiện (*) là: 2,3,4,5,6. Suy ra có: 5 cặp (b,c).
Khi c = 2: Các giá trị của b thỏa mãn điều kiện (*) là: 3,4,5,6. Suy ra có: 4 cặp (b,c).
Khi c = 3: Các giá trị của b thỏa mãn điều kiện (*) là: 4,5,6. Suy ra có: 3 cặp (b,c).
Khi c = 4: Các giá trị của b thỏa mãn điều kiện (*) là: 4,5,6. Suy ra có: 3 cặp (b,c).
Khi c = 5: Các giá trị của b thỏa mãn điều kiện (*) là: 5,6. Suy ra có: 2 cặp (b,c).
Khi c = 6: Các giá trị của b thỏa mãn điều kiện (*) là: 5,6. Suy ra có: 2 cặp (b,c).
Vậy, số cặp (b,c) thỏa mãn điều kiện (*) là 19