K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Không gian mẫu là tập hợp số chấm xuất hiện khi gieo con xúc xắc hai lần liên tiếp khi đó \(n\left( \Omega  \right) = 6.6 = 36\)

A = {(1; 1);           (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)} \( \Rightarrow P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\)

B = {(1; 2);           (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)} \( \Rightarrow P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\)

C = {(2; 6);           (3; 5); (4; 4); (5; 3); (6; 2)} \( \Rightarrow P\left( C \right) = \frac{5}{{36}}\)

D = {(1; 6);           (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)} \( \Rightarrow P\left( D \right) = \frac{6}{{36}} = \frac{1}{6}\)

Do đó

\(P\left( A \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( B \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( C \right).P\left( D \right) = \frac{5}{{36}}.\frac{1}{6} = \frac{5}{{216}}\)

Mặt khác

AC = \(\emptyset  \Rightarrow P\left( {AC} \right) = 0\)

BC = {(6; 2)} \( \Rightarrow P\left( {BC} \right) = \frac{1}{{36}}\)

CD = \(\emptyset  \Rightarrow P\left( {CD} \right) = 0\)

Khi đó \(P\left( {AC} \right) \ne P\left( A \right).P\left( C \right);P\left( {BC} \right) \ne P\left( B \right).P\left( C \right);P\left( {CD} \right) \ne P\left( C \right).P\left( D \right)\)

Vậy các cặp biến cố A và C; B và C, C và D không độc lập.

30 tháng 7 2018

Đáp án B

Phương pháp:

Phương trình a x 2   +   b x   +   c   =   0 ( a ≠ 0 )  có nghiệm

⇔ ∆ ≥ 0

Gọi A là biến cố: 

"Phương trình  a x 2   +   b x   +   c   = 0 có nghiệm"

 

 

 

b: 2=1+1

3=1+2=2+1

4=1+3=2+2=3+1

5=1+4=2+3=3+2=4+1

6=1+5=2+4=3+3=4+2=5+1

7=1+6=2+5=3+4=4+3=5+2=6+1

8=2+6=3+5=4+4=5+3=6+2

9=3+6=4+5=5+4=6+3

10=4+6=5+5=6+4

11=5+6=6+5

12=6+6

=>Bảng tần số/xác suất thực nghiệm là:

điểm số23456789101112
tần số12345654321
tần suất2,8%5,6%8,3%11.1%13,9%16,7%13,9%11,1%8,3%5,6%2.8%

a: Điểm có khả năng xuất hiện nhiều nhất là 7 điễm

xác suất là 16,7%

1 tháng 4 2023

b: 2=1+1

3=1+2=2+1

4=1+3=2+2=3+1

5=1+4=2+3=3+2=4+1

6=1+5=2+4=3+3=4+2=5+1

7=1+6=2+5=3+4=4+3=5+2=6+1

8=2+6=3+5=4+4=5+3=6+2

9=3+6=4+5=5+4=6+3

10=4+6=5+5=6+4

11=5+6=6+5

12=6+6

=>Bảng tần số/xác suất thực nghiệm là:

điểm số23456789101112
tần số12345654321
tần suất2,8%5,6%8,3%11.1%13,9%16,7%13,9%11,1%8,3%5,6%2.8%

a: Điểm có khả năng xuất hiện nhiều nhất là 7 điễm

xác suất là 16,7%

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

Số lần xuất hiện mặt có số chấm lẻ là:

\(21 + 8 + 18 = 47\) (lần)

Xác suất thực nghiệm của biến cố “Gieo được mặt có số chấm là số lẻ” là \(\frac{{47}}{{120}}\).

HQ
Hà Quang Minh
Giáo viên
7 tháng 10 2023

 a.

Các số chẵn là 2;4;6

Số lần được 2 là 20, số lần được 4 là 22, số lần được 6 là 15.

Số lần được số chẵn là: 20+22+15=57

Xác suất thực nghiệm của sự kiện “Số chấm xuất hiện là số chẵn” là:\(\frac{{57}}{{100}} = 57\% \)

b.

Các số lớn hơn 2 là 3;4;5;6

Số lần được 3 là 18, số lần được 4 là 22, số lần được 5 là 10, số lần được 6 là 15.

Số lần được số lớn hơn 2 là: 18+22+10+15=65

Xác suất thực nghiệm của sự kiện “Số chấm xuất hiện lớn hơn 2” là:\(\frac{{65}}{{100}} = 65\% \)

a: A={(1;1); (1;2); ...; (1;6)}

=>n(A)=6

P(A)=6/36=1/6

b: B={(1;4); (2;3); (3;2); (4;1)}

=>P(B)=4/36=1/9

c: C={(3;1); (4;2); (5;3); (6;4)}

=>P(C)=4/36=1/9

d: D={(1;3); (1;5); (1;1); (3;5); (3;1); (3;3); (5;3); (5;1); (5;5)}

=>P(D)=9/36=1/4

HQ
Hà Quang Minh
Giáo viên
8 tháng 10 2023

a) Xác suất thực nghiệm để gieo được đỉnh số 4 là: \(9:50 = \frac{9}{{50}}\)

b) Xác suất thực nghiệm để gieo được đỉnh có số chẵn: \(\left( {14{\rm{ }} + {\rm{ }}9} \right):50{\rm{ }} = \;\frac{{23}}{{50}}\)

25 tháng 5 2019

Chọn đáp án C.

19 tháng 1 2019

Chọn C

Số phần tử của không gian mẫu của phép thử gieo một con súc sắc hai lần liên tiếp là 36.

Để phương trình bậc hai  x 2 + bx + c = 0 có nghiệm là  (*) với 

Gọi A là biến cố chọn cặp số (b;c) thỏa mãn trong đó 

Khi c = 1: Các giá trị của b thỏa mãn điều kiện (*) là: 2,3,4,5,6. Suy ra có: 5 cặp (b,c).

Khi c = 2: Các giá trị của b thỏa mãn điều kiện (*) là: 3,4,5,6. Suy ra có: 4 cặp (b,c).

Khi c = 3: Các giá trị của b thỏa mãn điều kiện (*) là: 4,5,6. Suy ra có: 3 cặp (b,c).

Khi c = 4: Các giá trị của b thỏa mãn điều kiện (*) là: 4,5,6. Suy ra có: 3 cặp (b,c).

Khi c = 5: Các giá trị của b thỏa mãn điều kiện (*) là: 5,6. Suy ra có: 2 cặp (b,c).

Khi c = 6: Các giá trị của b thỏa mãn điều kiện (*) là: 5,6. Suy ra có: 2 cặp (b,c).

Vậy, số cặp (b,c) thỏa mãn điều kiện (*) là 19