Tìm y
y x 8 + y + y = 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, y x 8 = y + 10
=> 8y=y+10
=> 8y-y=10
=> 7y=10
=> y=10/7
b, y x 10 + 9 = y x 3 + 3
=> 10y+9=3y+3
=>10y+9-3y=3
=> 10y-3y+9=3
=> 10y-3y=3-9
=> 7y=-6
=> y=-6/7
:)
a) 2y - 12y = 0
\(\Rightarrow\) y ( 2-12) = 0
\(\Rightarrow\) y . (-10) =0
\(\Rightarrow\) y = 0 : (-10) = 0
b) (y-7)(y-8) = 0
\(\Rightarrow\orbr{\begin{cases}y-7=0\\y-8=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0+7\\y=0+8\end{cases}\Rightarrow}\orbr{\begin{cases}y=7\\y=8\end{cases}}}\)
c) x + x.2+x.3+x.4+...+x.10 = 165
\(\Rightarrow\) x ( 1+2+3+.....+8+9+10) = 165
\(\Rightarrow\)x . \(\frac{\left(1+10\right).10}{2}\)=165
\(\Rightarrow\) x . 55 = 165
\(\Rightarrow x=\frac{165}{55}=3\)
Can you k for me ,Lê Thị Kim Chi!
a) \(2y-12y=0\)
\(\Leftrightarrow-10y=0\)
\(\Leftrightarrow y=0:\left(-10\right)\)
\(\Leftrightarrow y=0\)
b) \(\left(y-7\right)\left(y-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-7=0\\y-8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=0+7\\y=0+8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=7\\y=8\end{cases}}\)
c) \(x+x.2+x.3+......+x.10=165\)
\(\Leftrightarrow x.\left(1+2+3+.....+10\right)=165\)
\(\Leftrightarrow x.55=165\)
\(\Leftrightarrow x=165:55\)
\(\Leftrightarrow x=3\)
\(P=x+y+\dfrac{10}{x+y}=2\sqrt{10}\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x+y=\sqrt{10}\\x^2+y=8\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(\dfrac{1+\sqrt{33-4\sqrt{10}}}{2};\dfrac{2\sqrt{10}-1-\sqrt{33-4\sqrt{10}}}{2}\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{6}\)=\(\dfrac{y}{10}\)=\(\dfrac{x+y}{6+10}\)=\(\dfrac{8}{16}\)=\(\dfrac{1}{2}\)Do đó :\(\dfrac{x}{6}\)=\(\dfrac{1}{2}\)=> x = 3\(^{\dfrac{y}{10}}\)=\(\dfrac{1}{2}\)=>y=5Vậy x=3 ; y=5
ta có : x-y=8
=> y=x-8
x+z=12
=> z=12-x
thay y=x-8,z=12-x vào y-z=10 ta đc:
(x-8) -( 12 -x) =10
x-8-12+x =10
2x-20=10
2x=30
x=15
thay x=15 vào x-y=8
=> 15-y=8
y=7
thay y=7 vào y-z=10
=> 7-z=10
z=-3
Vậy x=15,y=7,z=-3
p/s : mk lm ko bk có đúng ko, bn k nha !~
Ta có \(x-y=8;y-z=10;x+z=12\)
\(\Leftrightarrow x-y+y-z+x+z=30\)
\(\Leftrightarrow\left(x+x\right)+\left(-y+y\right)+\left(-z+z\right)=30\)
\(\Leftrightarrow2x=30\Rightarrow x=15\)
\(x-y=15-y=8\Rightarrow y=7\)
\(y-z=7-z=10\Rightarrow z=-3\)
Vậy \(x=15;y=7;z=-3\)
\(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{24}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{24}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x-y+z}{20-24+21}=\frac{10}{17}\)
\(\Rightarrow x=\frac{200}{17};y=\frac{240}{17};z=\frac{210}{17}\)
=> y . 1/8 + y.1/3 .18 - y . 1/5 . 10 = 120
=> y . 1/8 + y . 6 - y . 2 = 120
=> y . (1/8 + 6 - 2) = 120
=> y . \(\frac{33}{8}\) = 120
=> y = 120 : \(\frac{33}{8}\) = \(\frac{320}{11}\)
Y:8 + Y : 3 x18 - Y : 5 x 10 = 120
=Y :(8+3 . 18 - 5 ) . 10 =120
=Y: 57 .10 = 120
= Y :57 =120:10
=Y:57 =12
Y = 12 . 57
Y=684
\(y\times8+y+y=10\)
\(y\times8+y\times1+y\times1=10\)
\(y\times\left(8+1+1\right)=10\)
\(y\times10=10\)
\(y=10:10\)
\(y=1\)
y × 8 + y + y = 10
y × 8 + y × 1 + y × 1 = 10
y × (8 + 1 + 1) = 10
y × 10 = 10
y = 10 : 10
y = 1