3/5 mũ 50 = ...............
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=5+5^2+5^3+5^4+...+5^{49}+5^{50}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{49}+5^{50}\right)\)
\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{49}.\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{49}.6\)
\(=6.\left(5+5^3+...+5^{49}\right)⋮6\)
Vậy \(A⋮6\)
\(c.=50-\left[\left(50-8.5\right):2+3\right]\)
\(=50-\left[\left(50-40\right):2+3\right]\)
\(=50-\left[10:2+3\right]\)
\(=50-\left[5+3\right]\)
\(=50-8\)
\(=42\)
Ta có:
\(\left(-5\right)^{30}=\left(-5^3\right)^{10}=\left(-125\right)^{10}=125^{10}\)
\(\left(-3\right)^{50}=\left(-3^5\right)^{10}=\left(-81\right)^{10}=81^{10}\)
Vì \(125^{10}>81^{10}\)
⇒\(\left(-5\right)^{30}>\left(-3\right)^{50}\)
\(\left(-5\right)^{30}\) và \(\left(-3\right)^{50}\)
Ta có: \(\left(-5\right)^{30}=\left[\left(-5\right)^3\right]^{10}=\left(-125\right)^{10}\)
\(\left(-3\right)^{50}=\left[\left(-3\right)^5\right]^{10}=\left(-243\right)^{10}\)
Vì \(\left(-125\right)^{10}< \left(-243\right)^{10}\) nên \(\left(-5\right)^{30}< \left(-3\right)^{50}\)
A = 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90
2A = 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100
2A - A = ( 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100 ) - ( 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90 )
A = 2^100 - 2^3
B = 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50
5B = 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51
5B - B = ( 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51 ) - ( 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50 )
4B = 5^51 - 1
B = 5^51 - 1 / 4
\(\dfrac{3}{5^{50}}\) = 3.5-50