K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

TA CÓ \(\frac{a}{b}=\frac{c}{d}=\frac{p}{q}=\frac{am}{bm}=\frac{nc}{nd}=\frac{ep}{eq}\)

ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU TA CÓ 

\(\frac{a}{b}=\frac{c}{d}=\frac{p}{q}=\frac{ma}{mb}=\frac{nc}{nd}=\frac{ep}{eq}=\frac{ma+nc+ep}{mb+nd+eq}\)(ĐPCM)

24 tháng 10 2017

ADTC dãy tỉ số bằng nhau ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}a=b\cdot1=b\\b=c\cdot1=c\\c=a\cdot1=a\end{cases}\Leftrightarrow a=b=c}\)

22 tháng 10 2016

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c\)

22 tháng 10 2016

có câu b,c ko bạn

17 tháng 7 2021

Vì x < y nên a/b<c/d

=>a.b+a.d<b.c+b.a

=>a.(b+d)<b.(c+a)

=>a/b<c+a/b+d

=>a/b<c+a/b+d<c/d

 

khó hieẻu

27 tháng 6 2019

a) Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{ma}{mc}=\frac{nb}{nd}\)

áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{ma}{mc}=\frac{nb}{nd}=\frac{ma+nb}{mc+nd}=\frac{ma-nb}{mc-nd}\)

                     \(\Rightarrow\frac{ma+nc}{ma-nb}=\frac{mc+nd}{mc-nd}\left(đpcm\right)\)

27 tháng 6 2019

sai đề mb=nb  TL:

a)đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\) 

=>a=kb ;c=kd

=>\(\frac{ma+nb}{ma-nb}=\frac{m.k.b+n.b}{m.k.b-n.b}=\frac{b\left(m.k+n\right)}{b\left(m.k-n\right)}=\frac{m.k+n}{m.k-n}\) 

Mặt khác: 

\(\frac{mc+nd}{mc-nd}=\frac{m.k.d+n.d}{m.k.d-n.d}=\frac{d\left(m.k+n\right)}{d\left(m.k-n\right)}=\frac{m.k+n}{m.k-n}\) 

=>\(\frac{ma+nb}{ma-nb}=\frac{mc+nd}{mc-nd}\) (đpcm)

hc tốt

2 tháng 8 2016

đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)

a, ta có 

+) \(\frac{ma+nc}{mb+nd}=\frac{mck+nc}{mdk+nd}=\frac{c\left(mk+n\right)}{d\left(mk+n\right)}=\frac{c}{d}\)

+) \(\frac{pa+qc}{pb+qd}=\frac{pck+qc}{pdk+qd}=\frac{c\left(pk+q\right)}{d\left(pk+q\right)}=\frac{c}{d}\)

Vậy...........

b, Ta có 

+) \(\frac{ma+nd}{mc+nd}=\frac{mck+ndk}{mc+nd}=\frac{k\left(mc+nd\right)}{mc+nd}=k\)

+) \(\frac{pa+qb}{pc+qd}=\frac{pck+pdk}{pc+qd}=\frac{k\left(pc+qd\right)}{pc+qd}=k\)

Vậy.............

c, ta có 

+) \(\frac{ma+nc}{pa+qc}=\frac{mck+nc}{pck+qc}=\frac{c\left(mk+n\right)}{c\left(pk+q\right)}=\frac{mk+n}{pk+q}\)

+) \(\frac{mb+nd}{pb+qd}=\frac{mdk+nd}{pdk+qd}=\frac{d\left(mk+n\right)}{d\left(pk+q\right)}=\frac{mk+n}{pk+q}\)

vậy.........

d, ta có 

+) \(\frac{ma+nb}{pa+qb}=\frac{mck+ndk}{pck+qdk}=\frac{k\left(mc+nd\right)}{k\left(pc+qd\right)}=\frac{mc+nd}{pc+qd}\)

Vậy.........

3 tháng 8 2016

thanks bạn nhìu nha