cho A bằng 1/9+1/16+1/25+...+1/6400.so sánh A với 1/4sos
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
>1/4+1/4+1/16+1/16+1/16
=2/4+3/16=11/16=66/96<80/96=5/6
vậy A<5/6
A = 1/4 +1/9 + 1/16 + 1/25 + 1/36
= ( 1/4 + 1/16 ) + ( 1/9 + 1/36) + 1/25
= 5/16 + 5/36 + 1/25
= 65/144 + 1/25
= 1769/3600
=> 1769/3600 < 5/6 (hay 1769/3600 < 3000/3600 -quyđồng-)
Vậy A< 5/6
Đúng nhé, tk cho mjk với-số to thiệt nhưng đúng mà-
xét (1/4-1)*(1/9-1)*(1/16-1)*...*(1/400-1)
= \(-\frac{3}{4}\times\frac{-8}{9}\times-\frac{15}{16}\times.....\times-\frac{399}{400}\)
=\(-\frac{3}{2^2}\times\left(\frac{-8}{3^2}\right)\times\left(\frac{-15}{4^2}\right)\times........\times\left(\frac{-399}{20^2}\right)\)
dãy trên có số số hạng là:( 20-2):1+1=19(số hạng)
mà các số đều là các số âm => có 19 số âm nhân vào nhau sẽ ra số âm
Vậy A< 1/2
tk mình nha bạn cũ
so sánh tổng a với 3/4 biết a= 1/4 1/9 1/16 1/25 ...... 1/4036081
Mk cần gấp lắm! Ai nhah mk tick cho
\(a=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{4036081}\)
\(=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{2009\times2009}\)
\(< \frac{1}{2\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2008\times2009}\)
\(=\frac{1}{4}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+...+\frac{2009-2008}{2008\times2009}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)
\(=\frac{3}{4}-\frac{1}{2009}< \frac{3}{4}\)
A=1/(2x2)+1/(3x3)+...+1/(100x100)
Nhận thấy rằng n x n -1=n x n -n+n-1=n x (n-1)+n-1=(n-1) x (n+1)
=> A < 1/(2x2-1)+1/(3x3-1)+...+1/(100x100-1)=1/(1x3)+1/(3x5)+...+1/(99x101)=1/2-1/202<1/2<3/4
A=1/(2x2)+1/(3x3)+...+1/(100x100) Nhận thấy rằng n x n -1=n x n -n+n-1=n x (n-1)+n-1=(n-1) x (n+1) => A < 1/(2x2-1)+1/(3x3-1)+...+1/(100x100-1)=1/(1x3)+1/(3x5)+...+1/(99x101)=1/2-1/202<1/2<3/4
a) Quy đồng pso và tính như bthg (4824829/6350400)
b) Vì 4814819 < 6350400 => A < 1
Bài này dễ mà bạn cũng hỏi =(((
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)....\left(\frac{1}{400}-1\right)\)
\(\Leftrightarrow A=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}....\frac{-399}{400}\)
\(=\frac{1.\left(-3\right)}{2.2}.\frac{2.\left(-4\right)}{3.3}.\frac{3.\left(-5\right)}{4.4}....\frac{19.\left(-21\right)}{20.20}\)
\(=\frac{\left(1.2.3...19\right).\left(\left(-3\right).\left(-4\right).\left(-5\right)...\left(-21\right)\right)}{\left(2.3.4...20\right)\left(2.3.4...20\right)}=\frac{1}{20}.\frac{\left(-21\right)}{2}=\frac{-21}{40}\)
Dễ dàng nhận thấy \(\frac{21}{40}>\frac{1}{2}\Rightarrow\frac{-21}{40}< \frac{-1}{2}\)
Vậy \(A< -\frac{1}{2}\)
A=41+91+161+251+361
𝐴=122+132+142+152+162A=221+321+421+521+621
𝐴<11.2+12.3+13.4+14.5+15.6A<1.21+2.31+3.41+4.51+5.61
⇒𝐴<1−16⇒A<1−61
Mà 1−16=56⇒𝐴<561−61=65⇒A<65
A = \(\dfrac{1}{9}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{25}\) + ... + \(\dfrac{1}{6400}\)
A = \(\dfrac{1}{3.3}\) + \(\dfrac{1}{4.4}\) + \(\dfrac{1}{5.5}\) + ... + \(\dfrac{1}{80.80}\)
\(\dfrac{1}{3.3}\) = \(\dfrac{1}{9}\)
\(\dfrac{1}{4.4}>\dfrac{1}{4.5}=\dfrac{1}{4}-\dfrac{1}{5}\)
\(\dfrac{1}{5.5}>\dfrac{1}{5.6}=\dfrac{1}{5}-\dfrac{1}{6}\)
................................
\(\dfrac{1}{80.80}>\dfrac{1}{80.81}=\dfrac{1}{80}-\dfrac{1}{81}\)
Cộng vế với vế ta có:
A = \(\dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+...+\dfrac{1}{80.80}\) > \(\dfrac{1}{9}\) + \(\dfrac{1}{4}-\dfrac{1}{81}\)
A > \(\dfrac{1}{4}+\left(\dfrac{1}{9}-\dfrac{1}{81}\right)\)
Vì \(\dfrac{1}{9}\) > \(\dfrac{1}{81}\) ⇒ \(\dfrac{1}{9}\) - \(\dfrac{1}{81}\) > 0 ⇒\(\dfrac{1}{4}\) + (\(\dfrac{1}{9}\) - \(\dfrac{1}{81}\)) > \(\dfrac{1}{4}\)
Kết luận:
A = \(\dfrac{1}{9}+\dfrac{1}{16}+\dfrac{1}{25}+...+\dfrac{1}{6400}\) > \(\dfrac{1}{4}\)