Tìm GTNN của :
a) A=a2+b2-2a-4b+6
b) b=x2+2y2-2xy+6y-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{a}{b}+\dfrac{b}{a}>=2\cdot\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\)
b: a<b
=>-2a>-2b
=>-2a-3>-2b-3
c: =x^2+2xy+y^2+y^2+6y+9
=(x+y)^2+(y+3)^2>=0 với mọi x,y
d: a+3>b+3
=>a>b
=>-5a<-5b
=>-5a+1<-5b+1
Khởi động nhẹ nhàng thôi:v
\(a^2+b^2+c^2\ge\dfrac{3}{4}\)
\(\Rightarrow a^2+b^2+c^2-a-b-c\ge\dfrac{3}{4}-\dfrac{3}{2}=-\dfrac{3}{4}\)
\(\Rightarrow\left(a^2-a+\dfrac{1}{4}\right)+\left(b^2-b+\dfrac{1}{4}\right)+\left(c^2-c+\dfrac{1}{4}\right)\ge0\)
\(\Rightarrow\left(a-\dfrac{1}{2}\right)^2+\left(b-\dfrac{1}{2}\right)^2+\left(c-\dfrac{1}{2}\right)^2\ge0\) (đúng)
\("="\Leftrightarrow a=b=c=\dfrac{1}{2}\)
a) C1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy
Ta có : a2 + b2 ≥ 2ab ( 1)
b2 + c2 ≥ 2bc ( 2)
c2 + a2 ≥ 2ac ( 3)
Từ ( 1 ; 2 ; 3) ⇒ 2( a2 + b2 + c2) ≥ 2( ab + ab + ac)
⇔ 3( a2 + b2 + c2) ≥ ( a + b + c)2
⇔ a2 + b2 + c2 ≥ \(\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{9}{4}.\dfrac{1}{3}=\dfrac{3}{4}\)
Đẳng thức xảy ra khi và chỉ khi : a = b = c = \(\dfrac{1}{2}\)
C2. Áp dụng BĐT Bunhiacopxki , ta có :
( a2 + b2 + c2)( 12 + 12 + 12) ≥ ( a + b + c)2
⇔ a2 + b2 + c2 ≥ \(\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{9}{4}.\dfrac{1}{3}=\dfrac{3}{4}\)
Đẳng thức xảy ra khi và chỉ khi : a = b = c = \(\dfrac{1}{2}\)
`A=16x^2+8x+5`
`=16x^2+8x+1+4`
`=(4x+1)^2+4>=4`
Dấu "=" xảy ra khi `4x+1=0<=>x=-1/4`
`B=x^2-x`
`=x^2-x+1/4-1/4`
`=(x-1/2)^2-1/4>=-1/4`
Dấu "=" xảy ra khi `x=1/2`
`C=a^2-2a+b^2+6b+2021`
`=a^2-2a+1+b^2+6b+9+2011`
`=(a-1)^2+(b+3)^2+2011>=2011`
Dấu "=" xảy ra khi \(\begin{cases}a=1\\b=-3\\\end{cases}\)
A.
$a^2+4b^2+9c^2=2ab+6bc+3ac$
$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$
$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$
$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$
$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$
$\Rightarrow a-2b=a-3c=2b-3c=0$
$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$
B.
$x^2+2xy+6x+6y+2y^2+8=0$
$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$
$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$
$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)
$\Rightarrow -1\leq x+y+3\leq 1$
$\Rightarrow -4\leq x+y\leq -2$
$\Rightarrow 2020\leq x+y+2024\leq 2022$
$\Rightarrow A_{\min}=2020; A_{\max}=2022$