Cho đa thức f(x) = ax5+bx3+bx2+a.Biết f(2021)=2021;hãy tính f(\(\dfrac{1}{2021}\)).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}f\left(5\right)=125a+25b+5c+2021\\f\left(4\right)=64a+16b+4c+2021\end{matrix}\right.\)
\(f\left(5\right)-f\left(4\right)=2020\) \(\Rightarrow61a+9b+c=2020\)
Ta có: \(\left\{{}\begin{matrix}f\left(7\right)=343a+49b+7b+2021\\f\left(2\right)=8a+4b+2c+2021\end{matrix}\right.\)
\(\Rightarrow f\left(7\right)-f\left(2\right)=335a+45b+5b=5\left(61a+9b+c\right)=5.2020\)
\(\Rightarrow f\left(7\right)-f\left(2\right)\) chia hết cho 5 nên nó là hợp số.
Giả sử đa thức \(f\left(x\right)-2022\) có nghiệm nguyên \(x=a\)
\(\Rightarrow f\left(x\right)-2022=\left(x-a\right).g\left(x\right)\) với \(g\left(x\right)\) là đa thức nhận giá trị nguyên khi x nguyên
\(\Rightarrow f\left(x\right)=\left(x-a\right).g\left(x\right)+2022\) (1)
Lại có với a nguyên thì \(\left(2020-a\right)-\left(2019-a\right)=1\) lẻ nên 2020-a và 2019-a luôn khác tính chẵn lẻ
\(\Rightarrow\left(2019-a\right)\left(2020-a\right)\) luôn chẵn
Lần lượt thay \(x=2020\) và \(x=2019\) vào (1) ta được:
\(f\left(2019\right)=\left(2019-a\right).g\left(2019\right)+2022\)
\(f\left(2020\right)=\left(2020-a\right).g\left(2020\right)+2022\)
Nhân vế với vế:
\(f\left(2019\right).f\left(2020\right)=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)
\(\Leftrightarrow2021=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)
Do \(\left(2019-a\right)\left(2020-a\right)g\left(2019\right).g\left(2020\right)\) chẵn \(\Rightarrow\) vế phải chẵn
Mà vế trái lẻ \(\Rightarrow\) vô lý
Vậy điều giả sử là sai hay đa thức đã cho không có nghiệm nguyên
Ta có: x=100
\(\Leftrightarrow x+1=101\)
Ta có: \(f\left(x\right)=x^{10}-101x^9+101x^8-101x^7+...+101x+2021\)
\(=x^{10}-x^9\cdot\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...+x\left(x+1\right)+2021\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^2+x+2021\)
\(=x+2021\)
\(=100+2021=2121\)
f(-7)=7
=>a*(-7)^2021+b*(-7)^2019+c*(-7)-5=7
=>a*7^2021+b*7^2019+c*7+5=-7
=>f(7)+10=-7
=>f(7)=-17
\(f\left(\dfrac{1}{x}\right)=a\left(\dfrac{1}{x}\right)^5+b\left(\dfrac{1}{x}\right)^3+b\left(\dfrac{1}{x}\right)^2+a\)
\(=\dfrac{a}{x^5}+\dfrac{b}{x^3}+\dfrac{b}{x^2}+a\)
\(=\dfrac{a+bx^2+bx^3+ax^5}{x^5}\)
\(=\dfrac{f\left(x\right)}{x^5}\)
\(\Rightarrow f\left(\dfrac{1}{2021}\right)=\dfrac{f\left(2021\right)}{2021^5}=\dfrac{2021}{2021^5}=\dfrac{1}{2021^4}\)