Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp mình bài 4 với ạ mình cảm ưn ạ
Lời giải:a. Xét tam giác $AHB$ và $AHC$ có:
$AH$ chung
$\widehat{AHB}=\widehat{AHC}=90^0$
$AB=AC$ (do $ABC$ cân tại $A$)
$\Rightarrow \triangle AHB=\triangle AHC$ (ch-cgv)
$\Rightarrow \widehat{HAB}=\widehat{HAC}$ $\Rightarrow AH$ là phân giác $\widehat{BAC}$
b.
Từ tam giác bằng nhau phần a suy ra $HB=HC$Xét tam giác $HBM$ và $HCN$ có:
$HB=HC$ (cmt)
$\widehat{HMB}=\widehat{HNC}=90^0$
$\widehat{HBM}=\widehat{HCN}$ (do tam giác $ABC$ cân tại $A$)
$\Rightarrow \triangle HBM=\triangle HCN$ (ch-gn)
$\Rightarrow BM=CN$
c.
Xét tam giác $MHB$ và $PHC$ có:
$HM=HP$ (gt)
$\widehat{MHB}=\widehat{PHC}$ (đối đỉnh)
$\Rightarrow \triangle MHB=\triangle PHC$ (c.g.c)
$\Rightarrow \widehat{HMB}=\widehat{HPC}$
Mà 2 góc này ở vị trí so le trong nên $CP\parallel BM$ hay $CP\parallel AB$
d.
Vì $\triangle HBM=\triangle HCN$ nên: $MB=CN, HM=HN$
Vì $\triangle MHB=\triangle PHC$ nên $MB=CP, HM=HP$
$\Rightarrow CN=CP, HN=HP$
$\Rightarrow HC$ là trung trực của $NP$
$\Rightarrow HC$ cắt $NP$ tại trung điểm của $NP$$\Rightarrow E$ là trung điểm $NP$
Xét tam giác $MNP$ có $NH, ME$ là trung tuyến và cắt nhau tại $Q$ nên $Q$ là trọng tâm của tam giác $MNP$
$\Rightarrow PQ$ cắt $MN$ tại trung điểm của $MN$ (1)
Mặt khác:
$HM=HN$ (đã cmt)
$AM=AB-MB=AC-CN=AN$$\Rightarrow AH$ là trung trực của $MN$
$\Rightarrow AH$ cắt $MN$ tại trung điểm của $MN$
$\Rightarrow K$ là trung điểm $MN$ (2)
Từ $(1); (2)\Rightarrow P,Q,K$ thẳng hàng.
Hình vẽ:
Lời giải:
a. Xét tam giác $AHB$ và $AHC$ có:
$AH$ chung
$\widehat{AHB}=\widehat{AHC}=90^0$
$AB=AC$ (do $ABC$ cân tại $A$)
$\Rightarrow \triangle AHB=\triangle AHC$ (ch-cgv)
$\Rightarrow \widehat{HAB}=\widehat{HAC}$
$\Rightarrow AH$ là phân giác $\widehat{BAC}$
b.
Từ tam giác bằng nhau phần a suy ra $HB=HC$
Xét tam giác $HBM$ và $HCN$ có:
$HB=HC$ (cmt)
$\widehat{HMB}=\widehat{HNC}=90^0$
$\widehat{HBM}=\widehat{HCN}$ (do tam giác $ABC$ cân tại $A$)
$\Rightarrow \triangle HBM=\triangle HCN$ (ch-gn)
$\Rightarrow BM=CN$
c.
Xét tam giác $MHB$ và $PHC$ có:
$HM=HP$ (gt)
$HB=HC$ (cmt)
$\widehat{MHB}=\widehat{PHC}$ (đối đỉnh)
$\Rightarrow \triangle MHB=\triangle PHC$ (c.g.c)
$\Rightarrow \widehat{HMB}=\widehat{HPC}$
Mà 2 góc này ở vị trí so le trong nên $CP\parallel BM$ hay $CP\parallel AB$
d.
Vì $\triangle HBM=\triangle HCN$ nên: $MB=CN, HM=HN$
Vì $\triangle MHB=\triangle PHC$ nên $MB=CP, HM=HP$
$\Rightarrow CN=CP, HN=HP$
$\Rightarrow HC$ là trung trực của $NP$
$\Rightarrow HC$ cắt $NP$ tại trung điểm của $NP$
$\Rightarrow E$ là trung điểm $NP$
Xét tam giác $MNP$ có $NH, ME$ là trung tuyến và cắt nhau tại $Q$ nên $Q$ là trọng tâm của tam giác $MNP$
$\Rightarrow PQ$ cắt $MN$ tại trung điểm của $MN$ (1)
Mặt khác:
$HM=HN$ (đã cmt)
$AM=AB-MB=AC-CN=AN$
$\Rightarrow AH$ là trung trực của $MN$
$\Rightarrow AH$ cắt $MN$ tại trung điểm của $MN$
$\Rightarrow K$ là trung điểm $MN$ (2)
Từ $(1); (2)\Rightarrow P,Q,K$ thẳng hàng.
Hình vẽ: