cho tam giác ABC vuông tại A đường cao AH trên tia đối của AC lấy điểm D . Kẻ AK vuông góc với DK tại K chứng minh góc BKH bằng góc BCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: Xét ΔCHM vuông tại H và ΔCKB vuông tại K có
góc HCM chung
=>ΔCHM đồng dạng với ΔCKB
=>CH/CK=CM/CB
=>CH*CB=CK*CM
giải
tự vẽ hình nha
a, xét △ ABC và △ HBA có
góc B chung
góc BHA = góc BAC = 90 độ
➜ △ABC ∼ △HBA (g.g)
b, xét △CHM và △CKB có
góc C chung
góc CHM = góc CKB
➜ △CHM ∼ △CKB (g.g)
c, xét △DHB và △CKB có
góc B chung
góc BKC = góc BHD = 90 độ
➜ △DHB∼△CKB (g.g)
vì △DHB∼△CKB
➜DH/CK = HB/KB = DB/CB
xét △BKH và △BCD có
góc B chung
HB/KB = DB/CB (CMT)
➜△BKH ∼ △BCD
vì △BKH ∼ △BCD nên góc BKH = góc BCD (hai góc tương ứng )
a: Xét ΔABC và ΔADE có
AB=AD
\(\widehat{BAC}=\widehat{DAE}\)(hai góc đối đỉnh)
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAHB vuông tại H và ΔAKD vuông tại K có
AB=AD
\(\widehat{ABH}=\widehat{ADK}\)(ΔABC=ΔADE)
Do đó: ΔAHB=ΔAKD
=>BH=DK
c: Ta có: ΔAHB=ΔAKD
=>\(\widehat{HAB}=\widehat{DAK}\)
mà \(\widehat{HAB}+\widehat{HAD}=180^0\)(hai góc kề bù)
nên \(\widehat{DAK}+\widehat{DAH}=180^0\)
=>K,A,H thẳng hàng
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) Ta có: BA = BD (Gt)
=> Tam giác BAD cân tại B
=> góc BAD = góc BDA (đpcm)
b) Ta có: góc HAD + góc HDA = 900 (tam giác ADH vuông tại H)
góc DAC + góc DAB = 900 (tam giác ABC vuông tại A)
Mà góc HDA = góc DAB (cm a)
=> 900 - HDA = 900 - DAB
hay góc HAD = góc DAC (1)
Mà AD nằm giữa AH và AC (2)
Từ (1) và (2):
=> AD là phân giác của góc HAC (đpcm)
c) Xét tam giác AHD và tam giác AKD có:
góc H = góc K (=900)
AD = AD (cạnh chung)
góc HAD = góc DAC ( cm b)
Vậy tam giác AHD = tam giác AKD (ch-gn) (đpcm)
=> AH = AK (cạnh tương ứng) (đpcm)
d) Đang nghĩ
d) Xét tam giác DKC có: góc K = 900
=> Cạnh DC lớn nhất
==> KC + AK + BD < DC + BD + AK (vì KC < DC)
==> AC + BD < BC + AK ( do KC + AK = AC; DC + BD = BC)
Mà: AB = BD (Gt)
AK = AH (cm c)
=> AC + AB < BC + AH
Mà BC + AH < BC + 2AH
==> AB + AC < BC + 2AH (đpcm)
a,b: Xet ΔAHC vuông tại H và ΔDKC vuông tại K có
CA=CD
góc ACH=góc DCK
=>ΔAHC=ΔDKC
=>KC=HC=1/2BC
a) Ta có bd = ba (do đường cao ah là đường cao của tam giác vuông abc), và bd = ba nên tam giác abd là tam giác cân tại b.
Do đó, ad là đường phân giác của góc hacb (do ad là đường phân giác của tam giác abd).
b) Vẽ dk vuông góc với ac tại k. Ta cần chứng minh ak = ah.
Ta có tam giác akd vuông tại k, và tam giác ahd vuông tại h.
Do đó, ta cần chứng minh tam giác akd đồng dạng với tam giác ahd.
Ta có:
- Góc akd = góc ahd (vuông góc với ac)
- Góc kda = góc hda (cùng là góc nhọn)
- Cạnh ad chung
Do đó, tam giác akd đồng dạng với tam giác ahd.
Vậy, ak = ah.
c) Ta cần chứng minh ab + ac < bc + ah.
Ta có:
ab + ac = ab + ad + dc (do ad là tia phân giác của góc hacb)
= ab + ak + kc (do ak = ah và dk vuông góc với ac)
= ab + ah + kc (do ak = ah)
= ab + ah + hc (do kc = hc)
= ab + ah + bc (do ah là đường cao của tam giác abc)
= bc + ah + ab
= bc + ah + ba (do ab = ba)
= bc + ah.
Vậy, ab + ac < bc + ah.
Sửa đề: AK\(\perp\)BD tại K
Xét ΔBAD vuông tại A có AK là đường cao
nên \(BK\cdot BD=BA^2\left(1\right)\)
Xét ΔBAC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\left(2\right)\)
Từ (1),(2) suy ra \(BK\cdot BD=BH\cdot BC\)
=>\(\dfrac{BK}{BC}=\dfrac{BH}{BD}\)
Xét ΔBKH và ΔBCD có
\(\dfrac{BK}{BC}=\dfrac{BH}{BD}\)
\(\widehat{KBH}\) chung
Do đó: ΔBKH~ΔBCD
=>\(\widehat{BKH}=\widehat{BCD}\)
Sửa đề: AK
⊥
⊥BD tại K
Xét ΔBAD vuông tại A có AK là đường cao
nên
𝐵
𝐾
⋅
𝐵
𝐷
=
𝐵
𝐴
2
(
1
)
BK⋅BD=BA
2
(1)
Xét ΔBAC vuông tại A có AH là đường cao
nên
𝐵
𝐻
⋅
𝐵
𝐶
=
𝐵
𝐴
2
(
2
)
BH⋅BC=BA
2
(2)
Từ (1),(2) suy ra
𝐵
𝐾
⋅
𝐵
𝐷
=
𝐵
𝐻
⋅
𝐵
𝐶
BK⋅BD=BH⋅BC
=>
𝐵
𝐾
𝐵
𝐶
=
𝐵
𝐻
𝐵
𝐷
BC
BK
=
BD
BH
Xét ΔBKH và ΔBCD có
𝐵
𝐾
𝐵
𝐶
=
𝐵
𝐻
𝐵
𝐷
BC
BK
=
BD
BH
𝐾
𝐵
𝐻
^
KBH
chung
Do đó: ΔBKH~ΔBCD
=>
𝐵
𝐾
𝐻
^
=
𝐵
𝐶
𝐷
^
BKH
=
BCD