K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2024

\(\dfrac{2}{3}\) + \(x+\dfrac{1}{4}\)\(x\) = - \(\dfrac{22}{27}\)

       \(x+\dfrac{1}{4}x\) = - \(\dfrac{22}{27}\) - \(\dfrac{2}{3}\)

        \(\dfrac{5}{4}x\)      = - \(\dfrac{40}{27}\)

            \(x=-\dfrac{40}{27}:\dfrac{5}{4}\)

            \(x=-\dfrac{32}{27}\)

Vậy \(x=-\dfrac{32}{27}\)

25 tháng 8 2019

a) \(\left(x-3\right)^2-4=0\)

\(\left(x-3\right)^2=0+4\)

\(\left(x-3\right)^2=4\)

\(\left(x-3\right)^2=\pm4\)

\(\left(x-3\right)^2=\pm2^2\)

\(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)

\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

\(4x^2+12x+9-4x^2+1=22\)

\(12x+10=22\)

\(12x=22-10\)

\(12x=12\)

\(x=1\)

c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)

\(16x^2-9-16x^2+40x-25=16\)

\(-34+40x=16\)

\(40x=16+34\)

\(40x=50\)

\(x=\frac{50}{40}=\frac{5}{4}\)

d) \(x^3-9x^2+27x-27=-8\)

\(x^3-9x^2+27x-27+8=0\)

\(x^3-9x^2+27x-19=0\)

\(\left(x^2-8x+19\right)\left(x-1\right)=0\)

Vì \(\left(x^2-8x+19\right)>0\) nên:

\(x-1=0\)

\(x=1\)

e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)

\(x^3+2x^2+x+x^2+2x+1-x^2-3x^2=2\)

\(3x+1=2\)

\(3x=2-1\)

\(3x=1\)

\(x=\frac{1}{3}\)

25 tháng 8 2019

b) ( 2x+3)^2 - (2x+1)(2x-1) =22

=> 4x2+12x+9-4x2+1=22

=> 12x=12

=>x=1

c) (4x+3)(4x-3) -(4x-5)^2 =16

=>16x2-9-16x2+40x-25=16

=>40x=50

=>x=4/5

25 tháng 8 2019

a)\(\left(x-13\right)^2-4=0\\\left(x-13\right)^2=4\\ \left(x-13\right)^2=2^2\\ \Rightarrow\left\{{}\begin{matrix}x-13=2\\x-13=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15\\-11\end{matrix}\right.\)

vậy...

13 tháng 8 2020

b) ( 2x + 3)2 – (2x + 1)(2x – 1) = 22

<=> 4x2 + 12x + 9 - 4x2 + 1 = 22

<=> 12x + 10 = 22

<=> 12x = 12

<=> x = 1

Vậy x = 1

c) (4x + 3)(4x – 3) – (4x - 5)2 = 16

<=> 16x2 - 9 - 16x2 + 40x - 25 = 16

<=> 40x - 34 = 16

<=> 40x = 50

<=> \(\frac{5}{4}\)

Vậy \(x=\frac{5}{4}\)

e) (x + 1)3 – x2(x + 3) = 2

<=> x3 + 3x2 + 3x + 1 - x3 - 3x2 = 2

<=> 3x + 1 = 2

<=> 3x = 2

<=> x = \(\frac{2}{3}\)

Vậy \(x=\frac{2}{3}\)

f) (x – 2)3 – x(x – 1)(x + 1) + 6x2 = 5

<=> x3 - 6x2 + 12x - 8 - x3 + x + 6x2 = 5

<=> 13x - 8 = 5

<=> 13x = 13

<=> x = 1

Vậy x = 1

21 tháng 9 2020

a) ( x - 3 )2 - 4 = 0

<=> ( x - 3 )2 - 22 = 0

<=> ( x - 3 - 2 )( x - 3 + 2 ) = 0

<=> ( x - 5 )( x - 1 ) = 0

<=> x = 5 hoặc x = 1

b( 2x + 3 )2 - ( 2x + 1 )( 2x - 1 ) = 22

<=> 4x2 + 12x + 9 - ( 4x2 - 1 ) = 22

<=> 4x2 + 12x + 9 - 4x2 + 1 = 22

<=> 12x + 10 = 22

<=> 12x = 12

<=> x = 1

c) ( 4x + 3 )( 4x - 3 ) - ( 4x - 5 )2 = 16

<=> 16x2 - 9 - ( 16x2 - 40x + 25 ) = 16

<=> 16x2 - 9 - 16x2 + 40x - 25 = 16

<=> 40x - 34 = 16

<=> 40x = 50

<=> x = 50/40 = 5/4

d) x3 - 9x2 + 27x - 27 = -8

<=> ( x - 3 )3 = -8

<=> ( x - 3 )3 = (-2)3

<=> x - 3 = -2

<=> x = 1 

e) ( x + 1 )3 - x2( x + 3 ) = 2

<=> x3 + 3x2 + 3x + 1 - x3 - 3x2 = 2

<=> 3x + 1 = 2

<=> 3x = 1

<=> x = 1/3

f) ( x - 2 )3 - x( x - 1 )( x + 1 ) + 6x2 = 5

<=> x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 6x2 = 5

<=> x3 + 12x - 8 - x3 + x = 5

<=> 13x - 8 = 5

<=> 13x = 13

<=> x = 1

21 tháng 9 2020

a) \(\left(x-3\right)^2-4=0\)

=> \(\left(x-3\right)^2-2^2=0\)

=> \(\left(x-3-2\right)\left(x-3+2\right)=0\)

=> \(\left(x-5\right)\left(x-1\right)=0\)

=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

=> \(\left(2x+3\right)^2-\left[\left(2x\right)^2-1^2\right]=22\)

=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)

=> \(\left(2x\right)^2+2\cdot2x\cdot3+3^2-4x^2+1=22\)

=> \(4x^2+12x+9-4x^2+1=22\)

=> \(12x+9+1=22\)

=> \(12x+10=22\)

=> 12x = 12

=> x = 1

c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)

=> \(\left(4x\right)^2-3^2-\left[\left(4x\right)^2-2\cdot4x\cdot5+5^2\right]=16\)

=> \(16x^2-9-\left(16x^2-40x+25\right)=16\)

=> \(16x^2-9-16x^2+40x-25=16\)

=> \(-9+40x-25=16\)

=> \(40x=16+25-\left(-9\right)=16+25+9=50\)

=> x = 50/40 = 5/4

d) \(x^3-9x^2+27x-27=-8\)

=> \(x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3=8\)

=> \(\left(x-3\right)^3=-8\)

=> \(\left(x-3\right)^3=\left(-2\right)^3\)

=> x - 3  = -2 => x = 1

e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)

=> \(x^3+3x^2+3x+1-x^3-3x^2=2\)

=> \(3x+1=2\)

=> \(3x=1\)=> x = 1/3

f) \(\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+6x^2=5\)

=> \(x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3-x\left(x^2-1\right)+6x^2=5\)

=> \(x^3-6x^2+12x-8-x^3+x+6x^2=5\)

=> \(\left(12x+x\right)-8=5\)

=> 13x  = 13

=> x = 1

14 tháng 10 2020

21, \(x^3-4x^2+4x=x\left(x^2-4x+4\right)=x\left(x-2\right)^2\)

22, \(15x^2y+20xy^2-25xy=5xy\left(3x+4y-5\right)\)

23, \(4x^2+8xy-3x-6y=4x\left(x+2y\right)-3\left(x+2y\right)=\left(4x-3\right)\left(x+2y\right)\)

24, \(x^3-6x^2+9x=x\left(x^2-6x+9\right)=x\left(x-3\right)^2\)

Tương tự :)) 

14 tháng 10 2020

21.\(x^3-4x^2+4x\)

\(=x\left(x^2-4x+4\right)\)

\(=x\left(x-2\right)^2\)

22,\(15x^2y+20xy^2-25xy\)

\(=5xy\left(3x+4y-5\right)\)

23,\(4x^2+8xy-3x-6y\)

\(=4x\left(x+2y\right)-3\left(x+2y\right)\)

\(=\left(4x-3\right)\left(x+2y\right)\)

24\(x^3-6x^2+9x\)

\(=x\left(x^2-6x+9\right)\)

\(=x\left(x-3\right)^2\)

25,\(x^2-xy+x-y\)

\(=x\left(x-y\right)+\left(x-y\right)\)

\(=\left(x+1\right)\left(x-y\right)\)

26.\(xy-2x-y^2+2y\)

\(=x\left(x-2\right)-y\left(y-2\right)\)

\(=\left(x-y\right)\left(x-2\right)\)

27,\(x^2+x-xy-y\)

\(=\left(x^2-xy\right)+\left(x-y\right)\)

\(=x\left(x-y\right)+\left(x-y\right)\)

\(=\left(x+1\right)\left(x-y\right)\)

28,\(x^2+4x-y^2+4\)

\(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right)\left(x+2+y\right)\)

29.\(x^2-2xy+y^2-4\)

\(=\left(x-y\right)^2-2^2\)

\(=\left(x-y-2\right)\left(x-y+2\right)\)

9 tháng 9 2018

a)    4(x + 3)(3x - 2) - 3(x - 1)(4x - 1) = -27
<=> 4(3x2 + 7x - 6) - 3(4x2 - 5x + 1) = -27
<=> 12x2 + 28x - 24 - 12x2 + 15x - 3 = -27
<=> 43x = 0 <=> x = 0
Vậy nghiệm là x = 0
b) Đề không rõ, mình sửa lại đề nha:
       4x(2x2 - 1) + 27 = (4x2 + 6x + 9)(2x + 3)
<=> 8x3 - 4x + 27 = 8x3 + 24x2 + 36x + 27
<=> 24x2 + 40x = 0 <=> x = 0 hay x = -5/3
Vậy nghiệm là x = 0 hay x = -5/3
 

30 tháng 8 2023

1)

\(\sqrt{-x}=2\\ \Leftrightarrow\sqrt{-1.x}=2\\\Leftrightarrow \sqrt{-1.x}=\sqrt{4}\\ \Leftrightarrow-1.x=4\\ \Leftrightarrow x=-4\)

Vậy \(S=\left\{-4\right\}\)

\(2)\sqrt{4x^2-4x+1}=3\\\Leftrightarrow \sqrt{\left(2x-1\right)^2}=3\\\Leftrightarrow\left|2x-1\right| =3\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{-1;2\right\}\)

30 tháng 8 2023

bổ xung tí

1) \(ĐK:-x\ge0\Leftrightarrow x\le0\)

\(2)4x^2-4x+1\ge0\Leftrightarrow\left(2x-1\right)^2\ge0\forall x\in R\)

11 tháng 8 2016

21) 125x3 -1

=125x3-13

=(5x-1)(25x2+5x+1)

22) 4x4 - 9x2

=x2(4x2-9)

=x2(4x2-32)

=x2(2x-3)(2x+3)

23) 64x2 - 25y4

=(8x)2-(5y2)2

=(8x-5y2)(8x+5y2)

24) 4( a + b )2 - 9( a - b )2

=22(a+b)2-32(a-b)2

=[2(a+b)]2-[3(a-b)]2

=[2(a+b)-3(a-b)][2(a+b)+3(a-b)]

=(2a+2b-3a+3b)(2a+2b+3a-3b)

=(5a-b)(5b-a)

25) 8( x + 1 )3 - 27( x - 1 )3

=23(x+1)3-33(x-1)3

=[2(x+1)]3-[3(x-1)]3

={[2(x+1)]-[3(x-1)}{[2(x+1)]2+[2(x+1)]*[3(x-1)]+[3(x-1)]2}

={2x+2-3x+3}{4x2+8x+4+6x2-6+9x2-18x+9}

=(5-x)(19x2-10x+7)

 

11 tháng 8 2016

cảm ơnToán lớp 8

17 tháng 9 2016

1.A =( x-3)( x+3) + 15 - x2

   A=X2-3X+3X+15-X3

  A=15-X

2.B=(X -1) (X2+X+1) - X (X2+2) + 2X  

 B=X3+ X2+ X - X- X - 1 - X- 2X + 2X

B=   -1

3.C=(2X - 1 ) (4X+ 2X + 1) - X ( 8 X 2 + 1 ) + X

C=8X- 4X+4X- 2X +2 X - 1 - 8X22 - X + X

C=8X- 1 - 8X22

MK CHỈ LM ĐC TỚI ĐÓ THUI SAI CHỖ NÀO ĐỪNG TRÁCH VÌ MK YẾU PHẦN NÀY

NV
18 tháng 6 2019

1/

\(3\left(-1-4x^2+5x\right)+4\left(3x^2+7x-6\right)=-27\)

\(\Leftrightarrow-3-12x^2+15x+12x^2+28x-24=-27\)

\(\Leftrightarrow43x=0\Rightarrow x=0\)

2/

\(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2-1\right)=27\)

\(\Leftrightarrow x^3+27-x^3+x=27\)

\(\Leftrightarrow x=0\)