K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Đặt a/b=c/d=k

=>\(a=bk;c=dk\)

\(\left(\dfrac{a-b}{c-d}\right)^2=\left(\dfrac{bk-b}{dk-d}\right)^2=\left(\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right)^2=\left(\dfrac{b}{d}\right)^2\)

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot k}=\dfrac{b^2\cdot k}{d^2\cdot k}=\dfrac{b^2}{d^2}\)

Do đó: \(\left(\dfrac{a-b}{c-d}\right)^2=\dfrac{ab}{cd}\)

b: \(\left(\dfrac{a+b}{c+d}\right)^3=\left(\dfrac{bk+b}{dk+d}\right)^3=\left(\dfrac{b\left(k+1\right)}{d\left(k+1\right)}\right)^3=\left(\dfrac{b}{d}\right)^3\)

\(\dfrac{a^3-b^3}{c^3-d^3}=\dfrac{b^3k^3-b^3}{d^3k^3-d^3}=\dfrac{b^3\left(k^3-1\right)}{d^3\left(k^3-1\right)}=\dfrac{b^3}{d^3}\)

Do đó: \(\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a^3-b^3}{c^3-d^3}\)

21 tháng 5 2016

Ta có : \(\left(a^2+b^2+c^2\right)\left(b^2+c^2+d^2\right)\ge\left(\sqrt{a^2b^2}+\sqrt{b^2c^2}+\sqrt{c^2d^2}\right)^2=\left(ab+bc+cd\right)^2\) (áp dụng bđt Schwartz)

Dấu " = " xảy ra khi \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Do đó, kết hợp cùng giả thiết suy ra đpcm

25 tháng 6 2017

 a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)

25 tháng 6 2017

hey you, còn câu b,c?

27 tháng 2 2019

a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.