Bài 5. (1,5 điểm) Cho tam MNPcân tại M(M<90o) . Kẻ NHvuông góc MP (H thuộc MP), PKvuông góc MN (K thuộc MN). NH và PK cắt nhau tại E. Hãy chứng minh: a)Tam giác NHP=Tam giác PKN . b) ME là phân giác của góc NMP.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Vì tam giác MNK cân nên MH vừa là p/g vừa là trung tuyến và đường cao \(\Rightarrow NH=HK;MH\perp NK.hay.IH\perp NK\)
Tam giác INK có IH vừa là trung tuyến \(\left(NH=HK\right)\) và đường cao \(\left(IH\perp NK\right)\) nên là tam giác cân
\(b,\) Xét \(\Delta ANK\) và \(\Delta BKN\) có
\(\left\{{}\begin{matrix}\widehat{MNK}=\widehat{MKN}\left(\Delta MNK.cân\right)\\\widehat{INK}=\widehat{IKN}\left(\Delta INK.cân\right)\\NK.chung\end{matrix}\right.\Rightarrow\Delta ANK=\Delta BKN\left(g.c.g\right)\)
\(\Delta ANK\)
Bài 1:
Xét tứ giác ABCD:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^{o}\) (Tổng các góc trong tứ giác).
Mà \(\widehat{A}= \) \(57^o;\) \(\widehat{C}=\) \(110^o;\) \(\widehat{D}=\) \(75^o\left(gt\right).\)
\(\Rightarrow\) \(\widehat{B}=\) \(118^o.\)
a) Gọi A(xA;yA) là điểm cố định mà (d) luôn đi qua
=> yA = mxA + 1 với mọi m
=> xA.m + 1 - yA = 0 với mọi m
<=> xA = 0 và 1 - yA = 0
<=> xA = 0 ; yA = 1
Vậy A(0;1)
b) Phương trình hoành đọ giao điểm của (P) và (d) là:
x2 = mx + 1
<=> x2 - mx - 1 = 0
\(\Delta\) = (-m)2 + 4 = m2 + 4 > 0 với mọi m
=> Pt có 2 nghiệm pb với mọi m
=> (P) luôn cắt (d) tại 2 điểm phân biệt A;B
Theo Vi - et ta có: xAxB = -1 < 0
=> xA ; xB trái dấu => A; B nằm khác phía so với trục tung
bài 3
Gọi giao điểm của EM với AC là K' ( K' \(\in\)AC )
Ta sẽ chứng minh K' \(\equiv\)K
Thật vậy, gọi giao điểm AC và MN là O ; K'N cắt DC tại I
dễ thấy O là trung điểm MN
do MN // EI \(\Rightarrow\frac{MO}{EC}=\frac{K'O}{K'C}=\frac{ON}{CI}\)\(\Rightarrow EC=CI\)
\(\Delta NEI\)có NC là đường cao vừa là trung tuyến nên cân tại N
\(\Rightarrow\)NC là đường phân giác của \(\widehat{ENI}\)
Mà \(\widehat{K'NE}+\widehat{ENI}=180^o\) có \(NM\perp NC\)nên NM là đường phân giác \(\widehat{K'NE}\)( 1 )
mặt khác : NM là đường phân giác \(\widehat{KNE}\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(K'\equiv K\)hay A,K,C thẳng hàng
Trên tia đối tia HC lấy D sao cho HD = HC
Tứ giác DECF có DH = HC ; EH = HF nên là hình bình hành
\(\Rightarrow\)DE // CF
\(\Rightarrow\)DE \(\perp\)CH ; BE \(\perp\)DH
\(\Rightarrow\)E là trực tâm tam giác DBH \(\Rightarrow HE\perp BD\)
Xét \(\Delta DBC\)có DH = HC ; BM = MC nên MH là đường trung bình
\(\Rightarrow\)MH // BD
\(\Rightarrow\)MH \(\perp EF\)
a: Xét ΔKNP vuông tại K và ΔHPN vuông tại H có
NP chung
\(\widehat{KNP}=\widehat{HPN}\)
Do đó: ΔKNP=ΔHPN
b: ΔKNP=ΔHPN
=>\(\widehat{KPN}=\widehat{HNP}\)
=>\(\widehat{ENP}=\widehat{EPN}\)
=>EN=EP
Xét ΔMEN và ΔMEP có
ME chung
EN=EP
MN=MP
Do đó: ΔMEN=ΔMEP
=>\(\widehat{NME}=\widehat{PME}\)
=>ME là phân giác của góc NMP