K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

\(x+6x^2+9x^3=0\)

\(x\left(1+6x+9x^2\right)=0\)

\(x\left(1+3x\right)^2=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\1+3x=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{3}\end{cases}}\)

8 tháng 10 2017

pt\(\Leftrightarrow x\left(9x^2+6x+1\right)=x\left(3x+1\right)^2=0\)

\(\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(3x+1\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}}\)

Vậy \(x=0\)và \(x=\frac{-1}{3}\)

29 tháng 9 2016

\(6x\left(1-3x\right)+9x\left(2x-7\right)+171=0\)

\(\Leftrightarrow6x-18x^2+18x^2-63x+171=0\)

\(\Leftrightarrow-57x=-171\)

\(\Leftrightarrow x=3\)

\(\frac{x+1}{2015}+\frac{x+2}{2014}=\frac{x+3}{2013}+\frac{x+4}{2012}\)

\(\Leftrightarrow\left(\frac{x+1}{2015}+1\right)+\left(\frac{x+2}{2014}+1\right)-\left(\frac{x+3}{2013}+1\right)-\left(\frac{x+4}{2012}+1\right)=0\)

\(\Leftrightarrow\)\(\frac{x+2016}{2015}+\frac{x+2016}{2014}-\frac{x+2016}{2013}+\frac{x+2016}{2012}=0\)

\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)

\(\Leftrightarrow x+2016=0\) ( vì \(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\ne0\) )

\(\Leftrightarrow x=-2016\)

18 tháng 11 2017

\(=\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=\left(x+1\right)\left(x^2-7x+19\right)=0\)

Ta thấy:  \(x^2-7x+19=x^2-2\times\frac{7}{2}x+\frac{7}{2}^2+\frac{27}{4}=\left(x-\frac{7}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)lớn hơn 0

\(\Rightarrow x+1=0\Rightarrow x=-1\)

18 tháng 11 2017

\(x^3-6x^2+12x+19=0\)

\(\Leftrightarrow\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-7x+19\right)=0\)

Mà \(x^2-7x+19>0\)với \(\forall x\)

\(\Rightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy \(x=-1\)

21 tháng 10 2023

\(x^3-5x^2-9x+45=0\)

=>\(x^2\left(x-5\right)-9\left(x-5\right)=0\)

=>\(\left(x-5\right)\left(x^2-9\right)=0\)

=>\(\left(x-5\right)\left(x-3\right)\left(x+3\right)=0\)

=>\(\left[{}\begin{matrix}x-5=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=3\\x=-3\end{matrix}\right.\)

21 tháng 10 2023

`x^3 -5x^2 -9x+45=0`

`<=> (x^3 -5x^2 )-(9x-45)=0`

`<=> x^2 (x-5)- 9(x-5)=0`

`<=>(x-5)(x^2 -9)=0`

`<=>(x-5)(x-3)(x+3)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-3=0\\x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=3\\x=-3\end{matrix}\right.\)

27 tháng 10 2021

\(\Leftrightarrow\left(x+2\right)^2\cdot\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)

27 tháng 10 2021

\(\Leftrightarrow x^3+5x^2+8x+4=0\\ \Leftrightarrow\left(x+1\right)\left(x+2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

13 tháng 7 2021

1. 

\(\left(12x^2+6x\right)\left(y+z\right)+\left(12x^2+6x\right)\left(y-z\right)\\ =\left(12x^2+6x\right)\left(y+z+y-z\right)\\ =2y\left(12x^2+6x\right)\\ =2y.6x\left(2x+1\right)\\ =12xy\left(2x+1\right)\)

2. 

\(x\left(x-6\right)+10\left(x-6\right)=0\\ \Leftrightarrow\left(x-6\right)\left(x+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)

Vậy \(x\in\left\{6;-10\right\}\) là nghiệm của pt

Bài 1:

Ta có: \(\left(12x^2+6x\right)\left(y+z\right)+\left(12x^2+6x\right)\left(y-z\right)\)

\(=\left(12x^2+6x\right)\left(y+z+y-z\right)\)

\(=6x\left(2x+1\right)\cdot2y\)

\(=12xy\left(2x+1\right)\)

Bài 2: 

Ta có: \(x\left(x-6\right)+10\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)

a: \(\Leftrightarrow x\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\)

hay \(x\in\left\{0;\sqrt{3};-\sqrt{3}\right\}\)

b: \(=\dfrac{x^3-3x^2+6x-8}{x-2}=\dfrac{x^2-2x-x^2+2x+4x-8}{x-2}=x^2-x+4\)

7 tháng 7 2018

\(x^3-9x+7x^2-63=0\)

\(\Rightarrow\left(x^3+7x^2\right)-9x-63=0\)

\(\Rightarrow x^2\left(x+7\right)-9\left(x+7\right)=0\)

\(\Rightarrow\left(x^2-9\right)\left(x+7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-9=0\\x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=9\\x=-7\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm3\\x=-7\end{cases}}}\)

Vậy ...

14 tháng 7 2021

x3−9x+7x2−63=0x3−9x+7x2−63=0

⇒(x3+7x2)−9x−63=0⇒(x3+7x2)−9x−63=0

⇒x2(x+7)−9(x+7)=0⇒x2(x+7)−9(x+7)=0

⇒(x2−9)(x+7)=0⇒(x2−9)(x+7)=0

⇒{x2−9=0x+7=0⇒{x2=9x=−7⇒{x=±3x=−7⇒{x2−9=0x+7=0⇒{x2=9x=−7⇒{x=±3x=−7

Vậy ...

Ta có: \(x^3+6x^2+9x=0\)

\(\Leftrightarrow x\left(x+3\right)^2=0\)

hay \(x\in\left\{0;-3\right\}\)

4 tháng 8 2021

x3+6x2+9x=0

⇒x(x2+6x+9)=0

⇒x(x+3)2=0

\(\left[{}\begin{matrix}x=0\\\left(x+3\right)^2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

9 tháng 8 2021

1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)

2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)

3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)

4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)

\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)

5, em xem lại đề nhé

9 tháng 8 2021

à lag tý @@

5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)

\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)

21 tháng 7 2015

 

x^3-9x^2+6x+16=0 

<=>x3-10x2+16x+x2-10x+16=0

<=>x.(x2-10x+16)+(x-2)(x-8)=0

<=>x.(x-2)(x-8)+(x-2)(x-8)=0

<=>(x-2)(x-8)(x+1)=0

<=>x=2 hoặc x=8 hoặc x=-1