Câu 5. Cho tam giác ABC vuông tại A (AB < AC) và trung tuyến AD. Qua D kẻ đường thẳng vuông góc với AD cắt AC và AB lần lượt tại E và F. Chứng minh:
a) tam giác ABC ~ tam giác AEF
b) BC2 = 4DE.DF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có FD song song với AE(cùng vuông góc với AB)
=>Góc BDC = Góc DCE (đồng vị)(1)
Từ(1) và góc BFD = Góc DEC = 90 độ
=> ĐPCM Câu a
b,Có E TĐ AC ; f trung điểm AB
\(\Rightarrow\frac{AE}{AC}=\frac{ÀF}{AB}=\frac{1}{2};\widehat{A}chung\)
=>Tam giác AEF đồng dạng ACB => ĐPCM (câu b)
a: Xét tứ giác CDHF có
góc CDF=góc CHF=90 độ
=>CDHF là tứ giác nội tiếp
b: Xét ΔBCA vuông tại C và ΔCDE vuông tại D có
góc CBA=góc DCE
=>ΔBCA đồng dạng với ΔCDE
=>DE/CA=CE/AB
=>DE*AB=CE*CA
BD là phân giác
=>DA/DC=BA/BC
mà CE/CD=BA/BC
nên DA=CE
=>DE*AB=AC*DA
a/
Ta có
\(AF\perp AC;EF\perp AD\Rightarrow\widehat{AFE}=\widehat{CAD}\) (góc có cạnh tương ứng vuông góc)
Xét tg vuông ABC có
\(AD=CD=BD=\dfrac{BC}{2}\) (Trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> tg ADC cân tại D \(\Rightarrow\widehat{CAD}=\widehat{ACB}\) (góc ở đáy tg cân)
\(\Rightarrow\widehat{ACB}=\widehat{AFE}\)
Xét tg vuông ABC và tg vuông AEF
\(\widehat{A}\) chung
\(\widehat{ACB}=\widehat{AFE}\) (cmt)
=> tg ABC đồng dạng với tg AEF
b/
Xét tg vuông AEF có
\(AD^2=DE.DF\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích của hình chiếu 2 cạnh góc vuông trên cạnh huyền)
Mà \(AD=\dfrac{BC}{2}\) (cmt)
\(\Rightarrow\left(\dfrac{BC^2}{2}\right)=DE.DF\Rightarrow BC^2=4.DE.DF\)
a: ΔABC vuông tại A
mà AD là đường trung tuyến
nên DA=DB=DC
ΔDAB có DA=DB
nên ΔDAB cân tại D
Ta có: \(\widehat{DAB}+\widehat{DFA}=90^0\)(ΔDFA vuông tại D)
\(\widehat{ABC}+\widehat{ACB}=90^0\)(ΔABC vuông tại A)
mà \(\widehat{DAB}=\widehat{ABC}\)(ΔDAB cân tại D)
nên \(\widehat{DFA}=\widehat{ACB}\)
Xét ΔAFE vuông tại A và ΔACB vuông tại A có
\(\widehat{AFE}=\widehat{ACB}\)
Do đó: ΔAFE~ΔACB
b: Xét ΔAEF vuông tại A có AD là đường cao
nên \(AD^2=DE\cdot DF\)
=>\(4\cdot AD^2=4\cdot DE\cdot DF\)
=>\(\left(2\cdot AD\right)^2=4\cdot DE\cdot DF\)
=>\(BC^2=4\cdot DE\cdot DF\)