K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(A=\dfrac{a^2+b^2+c^2}{a^2+b^2-2ab+b^2+c^2-2bc+a^2+c^2-2ca}=\)

\(=\dfrac{a^2+b^2+c^2}{2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)}=\)

\(=\dfrac{-2\left(ab+bc+ca\right)}{-4\left(ab+bc++ca\right)-2\left(ab+bc+ca\right)}=\dfrac{1}{3}\)

24 tháng 7 2015

Super Man mà lại còn phải lên đây để hỏi bài à?

28 tháng 7 2016

Super man hỏi bài? Nghịch lý

18 tháng 12 2020

ok

 

8 tháng 3 2019

ĐK: \(\hept{\begin{cases}a\ne-b\\b\ne-c\\c\ne-a\end{cases}}\)

Xét thương: \(\frac{a\left(b+c\right)\left(c+a\right)+b\left(c+a\right)\left(a+b\right)+c\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\).Do a,b,c thuộc N nên:

\(a⋮a+b\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\) (vì \(a⋮a\)) (1)

Khi đó: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=1+\frac{c}{c+a}\).Giả sử \(a\left(b+c\right)\left(c+a\right)+b\left(c+a\right)\left(a+b\right)+c\left(a+b\right)\left(b+c\right)⋮\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Thì \(1+\frac{c}{c+a}\inℕ\Rightarrow\frac{c}{c+a}\inℕ\Leftrightarrow\orbr{\begin{cases}c=0\\a=0\end{cases}}\) (2)

Từ (1) và (2) suy ra:  \(\orbr{\begin{cases}a=b=0\\b=c=0\end{cases}}...\left(h\right)...c=a=0\) 


Suy ra \(\orbr{\begin{cases}a=-b=0\\b=-c=0\end{cases}..\left(h\right)..c=-a=0}\) (Mâu thuẫn với đk)

Từ đây suy ra điều giả sử là sai.Suy rađpcm.

29 tháng 6 2016

a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

<=> \(a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)

<=> \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Tổng 3 số không âm bằng 0 <=> a=b=c=1

b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=3ab+3ac+3bc\)

<=> \(a^2-ab+b^2-bc+c^2-ac=0\)

<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac=0\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tổng 3 số không âm bằng 0 <=> a=b=c

30 tháng 6 2016

#NguyễnHoàngTiến ơi cảm ơn bạn đã giúp mình nhưng cho mình hỏi left với right trong bài của bạn có nghĩa là gì vậy hả, mình không hiểu lắm.

2 tháng 1 2020

1. Câu hỏi của Nguyễn Thị Hồng Nhung - Toán lớp 7 - Học toán với OnlineMath

1) 

Ta có : 

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Leftrightarrow\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)

\(\Leftrightarrow\frac{1}{c}.\frac{2}{1}=\frac{\left(a+b\right)}{ab}\)

\(\Leftrightarrow\frac{2}{c}=\frac{\left(a+b\right)}{ab}\)

\(\Leftrightarrow2ab=ac+bc\)                (1)

Lại có :

 \(\frac{a}{b}=\frac{a-c}{c-b}\)

\(\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)

\(\Leftrightarrow ac-ab=ab-bc\)

\(\Leftrightarrow2ab=ac+bc\)            (2)

Từ (1) và (2) :

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

7 tháng 8 2018

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

18 tháng 1 2021

\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Dấu ''='' xảy ra <=> a = b = c = 1 

14 tháng 2 2022

áp dụng tính chất day tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}\)=1

\(B=\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1+1+1=3\)

vậy B=3

28 tháng 6 2021

`(a+b+c)^2=3(ab+bc+ca)`

`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`

`<=>a^2+b^2+c^2=ab+bc+ca`

`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`

`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`

`VT>=0`

Dấu "=" xảy ra khi `a=b=c`

28 tháng 6 2021

`a^3+b^3+c^3=3abc`

`<=>a^3+b^3+c^3-3abc=0`

`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`

`<=>(a+b)^3+c^3-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`

`**a+b+c=0`

`**a^2+b^2+c^2=ab+bc+ca`

`<=>a=b=c`