Tìm\(x\in Z\)thõa mãn
\(2^x+3^x=35\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn chử mai làm đúng rồi. Chỉ là nhầm ở phần kết luận thôi. Mình giúp bạn ấy hoàn thành bài làm thôi nhé.
Ta có: \(\left(2x^2+x\right)^2< 4A\le\left(2x^2+x+2\right)^2\)
\(\Rightarrow\orbr{\begin{cases}4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+1\right)^2\\4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-3=0\\5x^2=0\end{cases}}\)
\(\Leftrightarrow x=3;-1;0\)
\(\Leftrightarrow A=121;1\)
cái này dùng phương pháp đánh giá tức là chặn ấy , em tự làm nhé, bận lắm
Ta có:\(x-y=\frac{-1}{2};y+z=\frac{2}{5};-x=\frac{-2}{3}\)
\(-x=\frac{-2}{3}\Rightarrow x=\frac{2}{3}\)
*\(x-y=\frac{1}{2}\)
\(\Rightarrow\)\(\frac{2}{3}-y=\frac{1}{2}\Rightarrow y=\frac{1}{6}\)
*\(y+z=\frac{2}{5}\)
\(\Rightarrow\frac{1}{6}+z=\frac{2}{5}\)
\(\Rightarrow z=\frac{7}{30}\)
\(\Rightarrow x=\frac{2}{3};y=\frac{1}{6};z=\frac{7}{30}\)
Học tốt nha!!!
\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{10}=\frac{y}{15}\)
\(7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{26}=\frac{16}{13}=\frac{x+y-z}{10+15-21}\)
\(\Rightarrow x+y-z=\frac{16}{13}\cdot4=\frac{64}{13}\)
Theo bài ra ta có: x + z - y = 32
\(\Rightarrow\hept{\begin{cases}3x=2y\Rightarrow21x=14y\\7y=5z\Rightarrow14y=10z\end{cases}\Rightarrow21x=14y=10z}\)\(\Rightarrow\frac{x}{\frac{1}{21}}=\frac{y}{\frac{1}{14}}=\frac{z}{\frac{1}{10}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{21}}=\frac{y}{\frac{1}{14}}=\frac{z}{\frac{1}{10}}=\frac{x+z-y}{\frac{1}{21}+\frac{1}{10}-\frac{1}{14}}=\frac{32}{\frac{8}{105}}=420\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{21}}=420\Rightarrow x=420\cdot\frac{1}{21}=20\\\frac{y}{\frac{1}{14}}=420\Rightarrow y=420\cdot\frac{1}{14}=30\\\frac{z}{\frac{1}{10}}=420\Rightarrow z=420\cdot\frac{1}{10}=42\end{cases}}\)
=> x + y - z = 20 + 30 - 42 = 8