tìm nghiệm của đa thức a= (x+1^2022)+2024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt E(x)=0
\(\Leftrightarrow5x^2+2022=0\)
\(\Leftrightarrow5x^2=-2022\)(Vô lý)
Để x là nghiệm của E(x) thì:
5x2 + 2020= 0
⇔ 5x2 = -2022
Mà 5x2 > 0 ( Với mọi x )
⇒ E(x) không có nghiệm.
tìm giá trị lớn nhất của P = \(\dfrac{|x-2022|-|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)
Giả sử đa thức \(f\left(x\right)-2022\) có nghiệm nguyên \(x=a\)
\(\Rightarrow f\left(x\right)-2022=\left(x-a\right).g\left(x\right)\) với \(g\left(x\right)\) là đa thức nhận giá trị nguyên khi x nguyên
\(\Rightarrow f\left(x\right)=\left(x-a\right).g\left(x\right)+2022\) (1)
Lại có với a nguyên thì \(\left(2020-a\right)-\left(2019-a\right)=1\) lẻ nên 2020-a và 2019-a luôn khác tính chẵn lẻ
\(\Rightarrow\left(2019-a\right)\left(2020-a\right)\) luôn chẵn
Lần lượt thay \(x=2020\) và \(x=2019\) vào (1) ta được:
\(f\left(2019\right)=\left(2019-a\right).g\left(2019\right)+2022\)
\(f\left(2020\right)=\left(2020-a\right).g\left(2020\right)+2022\)
Nhân vế với vế:
\(f\left(2019\right).f\left(2020\right)=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)
\(\Leftrightarrow2021=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)
Do \(\left(2019-a\right)\left(2020-a\right)g\left(2019\right).g\left(2020\right)\) chẵn \(\Rightarrow\) vế phải chẵn
Mà vế trái lẻ \(\Rightarrow\) vô lý
Vậy điều giả sử là sai hay đa thức đã cho không có nghiệm nguyên
a , | 4x + 2020 | = 0
b , | 2x + 1/4 | + | -5 | = | -14 |
c , | 2020 - 5x | - | 3 | = - | -8 |
d , | x mũ 2 + 4x | = 0
e , | x-1 | + 3x = 1
g , | 2-3x | + 3x = 2
h , | 5x-4 | + 5x = 4
i , | x - 1/4 | - | 2x + 5 | = 0
k , | 5x - 7 | - | 8-5x | = 0
n , | x mũ 3 -
A.
$a^2+4b^2+9c^2=2ab+6bc+3ac$
$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$
$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$
$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$
$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$
$\Rightarrow a-2b=a-3c=2b-3c=0$
$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$
B.
$x^2+2xy+6x+6y+2y^2+8=0$
$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$
$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$
$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)
$\Rightarrow -1\leq x+y+3\leq 1$
$\Rightarrow -4\leq x+y\leq -2$
$\Rightarrow 2020\leq x+y+2024\leq 2022$
$\Rightarrow A_{\min}=2020; A_{\max}=2022$
a=(x+1^2022)+2024=0
. x+1^2022=2024
x+1=2024
x=2023
Vậy đa thức a có nghiệm là x=2023