Cho tam ABC vuông tại A (AB<AC) .Phân giác góc ABC cắt AC tại D.Kẻ đường thẳng D vuông góc AB tại E
a. CM: tam giác ABD= tam giác EBD
b.ED cắt AD tại F.CM tam giác DFB cân
c.Kẻ BD cắt FC tại H.Cm H là trung điểm của FC,CM: B,D,H thẳng hàng
d. Cm BD vuông góc AE
Sửa đề: Vuông góc BC tại E
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: Sửa đề: ED cắt AB tại F, chứng minh ΔDFC cân
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>DF=DC
=>ΔDFC cân tại D
c: Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE và AF=EC
nên BF=BC
ΔBFC cân tại B
mà BH là đường phân giác
nên H là trung điểm của FC
d: Ta có: BA=BE
=>B nằm trên đường trung trực của AE(1)
ta có: DA=DE
=>D nằm trên đường trung trực của AE(2)
Từ (1),(2) suy ra BD là đường trung trực của AE
=>BD\(\perp\)AE